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ABSTRACT

This paper presents an investigation into the detection and classifica-
tion of drum sounds in polyphonic music and drum loops using non-
negative matrix deconvolution (NMD) and the Itakura Saito diver-
gence. The Itakura Saito divergence has recently been proposed as
especially appropriate for decomposing audio spectra due to the fact
that it is scale invariant, but it has not yet been widely adopted. The
article studies new contributions for audio event detection methods
using the Itakura Saito divergence that improve efficiency and nu-
merical stability, and simplify the generation of target pattern sets.
A new approach for handling background sounds is proposed and
moreover, a new detection criteria based on estimating the percep-
tual presence of the target class sources is introduced. Experimental
results obtained for drum detection in polyphonic music and drum
soli demonstrate the beneficial effects of the proposed extensions.

Index Terms— Source separation, music information retrieval,
audio event detection, non-negative matrix deconvolution, drum
transcription.

1. INTRODUCTION

Drum transcription is part of a larger application, called music tran-
scription, that deals with the automatic description of a music piece
in form of a symbolic score. The automatic transcription of music is
a very active area of research [1] but nevertheless todays methods are
still far from being robust enough to allow resynthesis of high qual-
ity music from the derived scores. Methods based on non-negative
factorisation have shown good potential to improve results of auto-
matic music transcription methods, and the present article deals with
the application of non-negative matrix factorisation methods to the
drum transcription problem.

Drum transcription methods proposed in the literature can be
divided into three groups: segment and classify [2] [3], match and
adapt [4] and separate and detect [5]. The method based on non
negative factorisation that will be developed in the present paper be-
longs to the last approach. The factorisation methods assume that
the observed spectrogram V ∈ <≥0,M×N results from the superpo-
sition of K source spectrograms Yk ∈ <≥0,M×N . Where K is the
number of sources, M is the number of frequency bins and N is the
number of time frames of the segment under analysis. Each of the
components Yk is represented by the outer product of K basis ( ~Wk

of size M ) with a corresponding activation ( ~Hk of length N ).
NMD is an extension of NMF which is capable to use templates

with a temporal structure. This makes the system capable to exploit
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the time-frequency “signature” of each source (patterns from now
on), formulated as follows:

V ≈ V̂ =

T−1∑
t=0

Wt ·Ht⇀ (1)

where (·)t⇀ is a column shift operator described in [6], V̂ approxi-
mates V ∈ <≥0,M×N , in Wt ∈ <≥0,M×K are represented the pat-
terns that model the K sources, T is the number of frames available
for each pattern and H ∈ <≥0,K×N .

The results that are obtained with the algorithms based on fac-
torisation depends critically on the objective function that is used.
In most studies the Kullback-Leibler (KL) divergence is favoured
[5, 7]. Alternatively the generalised beta divergence has been used
[8] and especially the Itakura Saito divergence (IS) [9, 10]. A special
advantage of the IS is the scale invariance that allows taking into ac-
count spectral features with low energy. Therefore, we have selected
to use the Itakura Saito divergence for the following study.

The main contributions of this paper can be summarised as fol-
lows: A new method for the representation of background (non tar-
get) sounds (see 2.4). A new method to stabilise the factorisation
algorithm against numerical problems due to very small amplitudes
in the observed spectra or bases (see 2.2). A new detection crite-
rion based on an estimate of the ratio between target and non target
energy (see 2.6). A new method to construct the templates for repre-
senting a class of events from a given set of examples (see 2.3).

This paper is organised as follows: Section 2 introduces the ba-
sic ideas of the proposed drum transcription system. Section 3 de-
scribes the experimental results that have been obtained and Section
4 summarises the conclusions and future work. The notation to be
used is as follows: Matrices are in bold: (H); vectors are denoted
with an arrow ( ~H); and scalar values are denoted as italic text (k).

2. DESCRIPTION OF THE TRANSCRIPTION SYSTEM

The drum detection algorithm to be described in the following is
based on the non negative tensor deconvolution (NTD) audio event
detection algorithm described in [11]. In the present study the audio
signals have a single channel so that the NTD algorithm simplifies
into NMD.

In this preliminary study we have focussed on drum events gen-
erated by bass drum (bd), hi-hat (hh) both open and closed, and snare
drum (sd). The restriction to these three drum sound classes follows
common practice in the state of the art [5, 4, 12]. Prior to drum de-
tection we run an onset detection algorithm [13], that allows us to
limit the decomposition to potentially most interesting signal seg-
ments, which leads to a strong reduction in false positives, and also
a reduction in runtime.
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In the following the time frequency representation of the signal
is denoted as V. V is constructed from the power 2 of the short
time Fourier transform (STFT) of the audio signal using a Hanning
window of size M, with analysis step M/4 and fft-size N. For decom-
position and detection the power spectrogram is converted into a mel
spectrogram using 40 frequency bands that are distributed equally in
mel scale over the full signal band. The mel band signals are ob-
tained using overlapping triangular filters [14].

Note that the probabilistic interpretation of the IS-NMF given
in [15] will no longer hold for the proposed MEL representation.
The probabilistic interpretation could be preserved if one would sum
complex spectral coefficients. Experimental evaluation has shown,
however, that this leads to decreasing performance. Comparing the
performance of the latter MEL representation with the performance
of the full power spectrogram, no consistent advantages were ob-
served. However, the run time of the algorithm using MEL repre-
sentation is about 25 times shorter when using the full spectrogram.
Therefore, the MEL representation has been selected for the follow-
ing experiments.

2.1. NMD update rules

The update rules are obtained for minimising the cost function given
by the Itakuro Saito divergence (IS)

dIS(V|V̂) =
∑
ik

vik
v̂ik
− log

vik
v̂ik
− 1 (2)

where the sum goes over all time frequency samples vik of the target
V and reconstructed V̂ MEL spectrograms. As shown in [10] the
following multiplicative update rules are guaranteed to reduce the
objective function in each step:

Wt ← Wt ~

(
V ~ V̂~(−2)

)
◦Ht⇀

V̂~(−1) ◦Ht⇀
(3)

H ← H~

∑
t

(
V ~ V̂~(−2)

)T
◦Wt⇀

∑
t

(
V̂~(−1)

)T
◦Wt⇀

(4)

The ◦ symbol denotes the outer product, while ~ is the Hadamard
product and powers of matrices indicated with ~(·) are element-
wise. After each update the patterns are normalised to ensure the
energy can be obtained from H.

The motivation to use the IS cost function in the present study
is due to its scale invariance, which is an interesting property for de-
composing audio signals [15]. This cost however, leads to problems
with low energy noise as discussed in the following section.

2.2. Controlling the Noise Robustness of IS-NMD

The IS divergence cost function is a ratio based measure and there-
fore, all amplitude levels of the target spectrum are taken into ac-
count with the same importance. The advantage is that perceptually
relevant properties in lower amplitude levels are fully taken into ac-
count. On the other hand, ambient noise or band stop filters in very
high frequency bands that are perceptually not relevant, will also
have a strong impact on the decomposition. Moreover, the numeri-
cal stability of the non-negative decomposition may be affected by
individual very small values or even zeros that might be present in
the reconstructed matrix V̂.

In [8, 7] this problem has been addressed by means of adjust-
ing the β parameter of the Bregman divergence. But this solution

does not allow an intuitive control. Moreover, this solution does not
adress the numerical problems with zeros in the bases W and by
consequence in V̂. Note that limiting V̂ from below is no appropri-
ate solution because it introduces a systematic bias into the estimate
which can have very strong impact on the decomposition notably
due to the scale invariance property.

Here a new approach is proposed that consists of adding a small
constant value to the observed MEL spectrogram V and at the same
time adding a fixed constant basis with fixed and matching activation
to the decomposition. A properly selected offset masks the effect of
low level noise avoiding the undesirable impact of irrelevant effects
on the decomposition preserving nevertheless the positive impact
of the ratio based measure for signal components above the noise
floor. The modification follows coherently the structure of the non-
negative representation and ensures a few desirable properties: first,
for the case that a perfect reconstruction is possible the global opti-
mum is not modified. If a perfect reconstruction is not possible then
the impact of the amplitude levels below the noise floor will be lim-
ited. Second, seeing the noise floor as an additional component we
conclude that the probabilistic interpretation proposed in [15] still
applies (if the MEL representation is not used). The question that
arises here is the question of how the constant should be selected.
The answer to this question depends notably on the SNR between
background signals and target signals. The experimental investiga-
tion will demonstrate that a proper selection of the noise floor can
positively effect the performance of the detection system (see 3).

2.3. Composing the target pattern set

For each of the target sound events - in this preliminary study bass
drum (bd), open and closed hi-hat (hh), snare drum (sd) are used -
a dictionary of patterns has to be learned from a collection of tar-
get sounds. For our experiments we used drum sounds from Vi-
enna symphonic database, ENST drums database [16] and the train-
ing example provided in the IDMT-SMT-Drum database [17]. The
database of target patterns for each class is constructed such that it
allows to represent the complete target class with a small error. To
simplify interpretation of the activations in the detection phase each
pattern should itself be a valid sound of the target class.

The set of target patterns is grown iteratively. It is initialised
by means of selecting the target pattern having the minimum aver-
age distance (as measured by the Itakura Saito divergence) to all the
other elements in the target class training database. For extending
the set of target patterns first the NMD algorithm is used to represent
the full set of events of the target class, however with adapting only
the activations, and then the target event with maximum representa-
tion cost is selected to extend the training database. In contrast to
vector quantisation this procedure allows to fully exploit the mixing
of the patterns in the target set. For selecting the target bases a noise
floor should be used as described in section 2.2 to avoid adding new
patterns due to irrelevant variations of the noise floor.

2.4. Representation of the background

To limit the impact of the other instruments on the performance of
the drum detection results the system should include a background
representation. In [11] this was done by means of extending the
dictionary of fixed target patterns with a small number of patterns
not belonging to the target classes. These patterns were adapted
such that they could represent any non target signals. A disadvan-
tage of this approach is the fact that the performance of the back-
ground strongly depends on the number of background bases and
their random initialisation. Depending on the number of background
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bases, and the complexity of the background sound the background
bases may or may not be used to fit the target events, and there are
no means to select the appropriate number of background patterns.
Another approach was used in [18] where a set of noise bases was
trained on 6h of noise data. Given the nearly unlimited amount of
variations in background noise this approach seems unrealistic even
for the special case when the background noise is known to be music.

In this study a new approach for handling the background scene
is proposed allowing for a more precise control of the impact of the
background sounds. The background model is setup such that it is
guaranteed to be able represent the entire audio signal. Here this
means that the decomposition is performed in segments that are ex-
act multiples of the NMD bases time length T . For a segment of
length lT there will be l non overlapping background bases, and all
but l activations are zero. Given that all the mel spectrum templates
Wj are normalised in energy the representation of the complete sig-
nal has only one perfect solution. The control of the amount of en-
ergy represented by the background bases is provided through `1-
norm regularisation of the activation of the background bases only.
The objective function eq. 2 becomes

min
Wj ,Hj

dIS(V|V̂(W,H)) + λ
∑

kb∈backgrd,i

hkb,i. (5)

Here hkb,i is the activation of the background bases kb for time i
and λ is the regularisation factor that penalises activations of the
background.

The key problem here is the determination of λ. For obtaining
a first idea of the effect of the regularisation one can study a toy
system with a single background base ~W with elements wi a scalar
activation h and a observed mel power spectrum ~V with elements
vi. In this case the closed form solution for h can be obtained

h =
∑
i

(
√

4λvi/wi + 1− 1)/(2λ) (6)

=
∑
i

2vi/(wi(
√

4λvi/wi + 1 + 1)) (7)

where the second step has been achieved after multiplying the nu-
merator and denominator with (

√
4λvi/wi + 1 + 1). For λ = 0

this gives the known solution h =
∑

i vi/wi. And for λ > 0 one
can see that the impact of λ depends on the ratio vi/wi, which means
that for situations with only background components one can achieve
corresponding regularisation effects if the regularisation constant is
increased proportional to 1/v. While the toy system is certainly not
sufficient to create a full understanding of the impact and scaling be-
haviour of λ the present result is in agreement with the experimental
results described in section 3.

2.5. Decomposing

Starting from the onset positions (specified by start and end time
for each onset event) that are detected with the algorithm described
in [13] and the same setup that was used in [19] sound segments
are determined that are covering 3T spectral frames. The segment
is formed such that it start exactly one analysis window before the
start of the onset given by the onset detection algorithm and ends 3T
analysis frames later.

The decomposition is done using all the target and background
bases as described in sec. 2.4. Initialisation of the target pattern acti-
vations is derived from the energy contour of the signal. Background
activations are treated the same besides that background activations
are non zero only at 1 position over the segment for each of the in-
dividual background bases, and that their activation is penalised by

the regularisation term given in eq. 5. Then NMD decomposition is
performed until convergence.

2.6. Drum event detection

Once the decomposition of the onsets zones is done the final deci-
sions have to be formed. Three criteria are used to decide whether
at any given point in time a drum class is active. First, an activation
based criteria is used: the activation vector of each drum (for ob-
taining the activation vector the activations of all the patterns repre-
senting the respective drum class are summed together) is convolved
with the kernel [0.9, 1, 0.9] to be able to properly take into account
drum event positions between the analysis frames. The resulting ac-
tivation for class c is denoted Hc(n), it represents a time evolution
of the activation of the class. Only the local maxima of these acti-
vations are retained and the median of these maxima Ĥcis formed
over the complete sound file. Then a threshold µP is introduced and
only activations fulfilling Hc(n) ≥ µpĤc will be retained. The ar-
gument here is that each drum type will be active less than half the
time and so the median value of the activations will represent a no-
tion of the activations due to background events. Only activations
that are above this background activation should be retained.
Second, a sum of all activations is calculated followed by smooth-
ing with a rectangular smoothing window F (n) of duration T and
amplitude 1/T . The result is a smoothed full activation HF (n),
which due to the energy normalisation of all bases patterns approx-
imates the signal energy. A second threshold factor µF is used and
only class activations fulfillingHc(n) ≥ µFHF (n) will be retained.
This criterion establishes a minimum SNR for detected events.
For the third criterion the power spectrum related to the target class
is re-synthesised and a band wise target to background ratio is calcu-
lated in form of a floating average of the energy the separated target
class within each MEL channel as follows

P (k, n) =
F (n) ∗ vc(k, n)2/v̂(k, n)

F (n) ∗ vc(k, n)
(8)

where P (k, n) is the average relative energy in the MEL bin k at
time position n, F (n) is the same smoothing window described
above, and vc(k, n) and v̂(k, n) are the power spectrum samples
in MEL sub band k at time position n of the separated target spec-
trogram and the complete estimated spectrogram respectively. This
value indicates the prominence of the target class in the observed
spectrum weighted by the energy distribution in the synthesised tar-
get spectrum. An average of the three largest values of all sub bands
is calculated P̂ (n) and this value is compared with a third threshold
µPE . Only target spectra leading to P̂ (n) ≥ µPE are retained.

Locations that pass all threshold tests are accepted as drum
events only if they are located within onset start and end times
provided by the onset detection algorithm mentioned above. Addi-
tionally, the drum events are then filtered such that for each class
only the strongest detected event for each onset zone is retained.

3. EXPERIMENTAL EVALUATION

For the following evaluation each of the three target classes (bd, hh,
sd) are represented using 15 patterns that were derived from target
training set using noise level parameters covering the noise level at-
tenuation from -15 to -55dB compared to the maximum value of
the target class. The experimental investigation aims to answer the
questions that were posed in the previous sections: what noise floor
should be used during decomposition, what regularisation parameter
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DB drum F-meas F-meas F-meas
µP µPE µP , µPE , µF

RWC bd 0.79 0.63 0.81
hh 0.79 0.75 0.79
sd 0.78 0.64 0.88

ENST Drums bd 0.88 0.81 0.96
hh 0.89 0.86 0.89
sd 0.57 0.66 0.74

Table 1. F-measures obtained using the median peak threshold (left),
the perceptual dominance threshold (centre), all thresholds (right).

should be used for controlling the background activations, and how
does the noise floor applied during the training of the target datasets
impact the detection properties.

Two datasets were used: 1) 100s of excerpts of drum solos of the
ENST drum database [16] and 2) 120s of polyphonic synthesised
from midi provided by the music genre data of the RWC database
[20] using the method described in [21]. The sample rate of the
sound samples is 44.1kHz, and the window size of the initial STFT
analysis is 1500 samples, step size 375 samples and FFT size 2048,
and the number of analysis frames covered in each pattern T = 20.
The evaluation measure is a standard F-measure calculated from re-
call and precision individually for the three traget classes. A drum
event is considered correctly detected if the detection appears with
the correct class within ±30ms of the annotated drum event.

The three thresholds described in the section 2.6 were optimised
on a set of training data separately for each of the target classes such
that maximum F-measure is obtained. Given the very strong dif-
ference between playing technique and spectral distribution of the
differente drums it appears normal that the thresholds µp, µpe, µF

strongly depend on the drum type.

3.1. Results

A first results concerns the effect of the noise level on the detection
performance for a given setup of target classes. This result is shown
in Fig. 1. The result is obtained for the synthesised RWC samples,
but similar results however with rather different convergence points
have been obtained as well for the ENST drum examples. The results
displayed is the F-measure for each drum type as a function of the
noise level parameter discussed in 2.2.
It becomes clear that for the bass drum, the noise floor should be
set higher than for hh and sd. This can be easily understood by the
fact that the bass drum is generally rather dominant when it appears.
For snare and hi-hat lowering the noise floor seems to reveal more
relevant spectral details and detection performance increases until
about 55dB attenuation relativ to the maximum amplitude of V.

A second result is related to the regularisation control parame-
ter λ. The results show that the average of the F-measures of the
three drums is improved when compared to a situation with no back-
ground bases, or when using background bases trained with standard
NMD configuration. Using the same regularisation control parame-
ter for all drum detectors the optimum value is λ = 25 leading for
the RWC sound examples to an average F-measure increasing from
0.78 to 0.83. However, the results are rather different for the differ-
ent drums. The optimal regularisation parameters for the respective
drum detectors are: for bd λbd = 50 with F-measure increasing from
0.79 to 0.82, for sd λsd = 10 with increase in F-measure from 0.78
to 0.88, and for hh λhh = 100 leading to an increase in F-measure
from 0.78 to 0.8. Following the mathematical analysis described in
sec. 2.4 this behaviour should be related to the signal energy present

15 20 25 30 35 40 45 50 55 60 65 70 75 80
0.65

0.7

0.75

0.8

0.85

0.9
bd/hh/sd detection performance (F−measure) db=POLY

noise cutoff [dB atten]

 

 

bass drum
  hi−hat
snare drum
mean

Fig. 1. Detection performance as a function of the noise level pa-
rameter in the decomposition phase for the RWC sound examples.

in the components related to the different drums in V. hh has by
far the smallest energy. The bd and sd components are relatively
strong and therefore the background bases will not be able to repre-
sent these two drums even with small λ.

The overall performance of the algorithm using parameter set-
tings that are optimal for the global F-measure comprising all detec-
tions (noise level for detection: -55dB, noise level for training the
bases: -25dB, and λ = 25) is shown in Tab. 1. This table allows
to see the effect of the individual detection criteria on the final F-
measure for all instruments individually. If only the threshold acting
on the activation relative to the median of the activation is used the
performance is overall quite good, with the exception of the snare
drum that is too low. Using the estimated perceptual impact of the
estimated component is a bit less satisfying with F-measures below
0.7. Combining all the three criteria however we get a significant
improvement of the performance such that all results, for the poly-
phonic and the drum loop data, are always above 0.74 F-measure.
Note that assuming that the subsequent drum detection phase will
produce perfect results, the initial onset detection described above
would result in an F-measure of 0.91 (bd), 0.95 (hh), and 0.94 (sd).

4. CONCLUSIONS AND FUTURE WORK

The present article has proposed a number of improvements of a
NMD based audio event detection framework that was previously
used for detection of audio events in film scenes, and that was here
used for the detection and classification of drum events.

The proposed changes have been motivated and the experimen-
tal evaluation has shown that the changes have potential to signif-
icantly improve the algorithm. The overall system performs well,
and it can be noted that there are no random initialisations to be
performed. This means that the result is completely deterministic,
which simplifies the use of the algorithm.

A main result of the present study is the fact that the detectors re-
quire different parameter settings (noise level and regularisation) for
different drums. Therefor, one can expect that overall performance
would be improved if events for the different drum types would be
detected individually, each using a dedicated decomposition of the
observed input spectrum. Further work is planned to study how the
configuration of the detection framework can be optimised.
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