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ABSTRACT

We present a system to realistically model the sound of bass
guitars, and how to estimate the corresponding parameters
from the sound of a bass guitar alone, without other physi-
cal measurements. Our model includes plucking and expres-
sion styles of the musician, like vibrato or bending, and the
string number for a realistic modeling and reproduction of the
sound. We show that we can estimate the playing techniques
and the string number with relatively high accuracy.

Index Terms— instrument coder, sound model, bass gui-
tar, playing styles

1. INTRODUCTION

Application scenario: We have a musical piece with a mix of
instruments, and would like to analyze, transmit, or modify it.
In the first processing step we have a hypothetical system for
separating out each instrument from the mix. In the next step,
we analyze the sound of each instrument, estimating parame-
ters for a model of the instrument sound. This can be seen as
an encoding system. In the decoding step, we take these pa-
rameters and feed them into a sound synthesis algorithm to re-
generate a sound as close as possible to the original sound or
at least natural and in a way that captures the most important
perceptual characteristics of the instrument. On this decoding
side, all the sounds from each instrument model can be put
back together in a mix. But now we have the additional ad-
vantage that we can attenuate or emphasize each instrument
individually if we wish, or we can generate a surround mix
where we can modify the position of each instrument sound
in space. A specific advantage of the model generated sound
is that we can also modify the characteristics of each instru-
ment sound, for instance modifying the instrument or chang-
ing playing styles of the instrument. These might be impor-
tant possibilities for future multimedia systems. A similar in-
teractive scenario is described in [1].

The goal of this paper is to develop an algorithm to tran-
scribe electric bass guitar recordings and estimate the most
important perceptual parameters for each played note. These

parameters can be fed to a sound synthesis model in the de-
coding step in order to recreate the original instrument sound
[2]. All required parameters are estimated from isolated bass
guitar recordings without any additional physical measure-
ments of the instrument itself.

2. PROBLEM TO SOLVE

We need to model the following effects for a natural and simi-
lar reproduced sound. The most influential parts of an electric
guitar are the strings, the magnetic pick-up, and the passive
electrical tone control. Body resonances only have a minor
influence on the resulting tone and will not be taken into ac-
count here. The guitar strings determine the basic sound since
when vibrating, they are the primary sound source.

The sound is mainly affected by the string material, ten-
sion, and stiffness. These features manifest primarily in fre-
quency shifts of partial vibrations also known as the effect
of inharmonicity [3]. Electromagnetic pick-ups capture the
string vibration depending on their position on the instrument
neck and the corresponding possible displacement of partials.

Another important means for the musician to manipulate
the tone are the plucking and expression styles, which are
used to play single notes on the instrument. In this work we
distinguish 5 different plucking styles—finger style, picked,
muted, slap pluck, and slap thumb—as well as 6 different ex-
pression styles—bending, slide, vibrato, harmonics, and dead
notes—executed with the fingering hand in addition to non-
decorated, normal expression style. See [4] for a detailed de-
scription of the playing techniques. In this publication, we
focus on a precise description of electric bass guitar tracks.
An extension of the proposed methods towards the analysis
of the electric guitar was presented in [5].

3. RELATED WORK

The bass line is considered to be the dominant melodic voice
in the lower pitch register with fundamental frequencies be-
tween around 40 Hz and 400 Hz. Due to the low fundamental
frequency range of bass notes, downsampling is commonly
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applied to the analyzed audio signal to accelerate the tran-
scription process [6, 7, 8]. At the same time, harmonic com-
ponents from other instruments in higher frequency ranges
are filtered out. Ryynänen and Klapuri estimate a variable,
context-dependent upper f0-limit for the bass line [9]. In
other publications, signal components or the percussion in-
struments [10] are removed in the spectrum before the bass
line is transcribed by applying different source separation
techniques such as the harmonic/percussion sound separation
(HPSS) algorithm. Spectral whitening can be applied to make
the transcription algorithm more robust to different timbres
of the bass instrument [9]. Note detection is performed either
in the time domain [6] by envelope extraction methods or in
the frequency domain—usually after several frame-wise f0
estimates are grouped to note events [11, 9, 7].

Due to its computational efficiency, the Short-time Fourier
Transformation (STFT) is the most often used spectral esti-
mation method [6, 11, 9]. Other spectral representations such
as the instantaneous frequency (IF) spectrogram [6, 7] or
the constant-Q spectrogram [12] are computed to improve
the achievable frequency resolution in the lower frequency
bands. Ryynänen and Klapuri present a hybrid transcription
framework for bass and melody transcription in polyphonic
music [9] by combining a Hidden Markov Model (HMM)
with two modeling strategies—acoustic note modeling and a
musicological model of the most probable note transitions.

4. NEW APPROACH

4.1. Development data sets

Two development sets DS-1 and DS-2 were taken from the
IDMT-SMT-Bass dataset (previously published in [4]) and
used for parameter optimization. The development set DS-1
comprises 550 randomly selected isolated bass guitar notes
(50 notes for each plucking and expression technique) and
the development DS-2 comprises 1711 notes, which were
recorded with the same instrument (Fame Baphomet 4 NTB
bass guitar) that was also used to record the bass lines in the
evaluation dataset introduced in Section 5.1. In the follow-
ing sections, the individual processing steps of the proposed
transcription algorithm are presented in detail.

4.2. Pre-processing & Spectral Estimation

First, we convert the audio signal to a monaural signal if
necessary and down-sample to a sampling frequency of
fs ≈ 5.51 kHz. Then, two different spectral representations
are extracted. First, a Short-time Fourier Transform (STFT)
spectrogramX is computed using a blocksize of 512 samples
and hopsize of 32 samples. The STFT spectrogram is used
for the envelope modeling as will be explained in Section 4.5.
Second, a reassigned spectrogram XIF based on the instan-
taneous frequency (IF) is computed with the same blocksize
and hopsize values. We estimate the instantaneous frequency

based on the method proposed by Abe et al. in [13]. We use a
logarithmic frequency axis with a fine resolution of 120 bins
per octave in the range between 29.1Hz and fs/2. In each
time frame t, the magnitude values of the STFT spectrogram
are reassigned and accumulated towards the logarithmic fre-
quency bins that correspond to the IF values at the original
frequency positions. Since sinusoidal peaks tend to produce
stable IF values in the surrounding frequency bins, sharper
peaks can be seen at frequency positions of the sinusoidal
signal components in the IF spectrogram. The mapping from
the continuous IF to the discrete logarithmic frequency scale
is performed in order to perform the cross-correlation with a
harmonic comb filter as will be explained in Section 4.4.

4.3. Onset Detection

To detect the note onset time, we propose a novel onset de-
tection function that measures the harmonic novelty. The
basic idea is to detect signal parts, where harmonic compo-
nents (fundamental frequency and overtones) begin. These
components show a sparse energy distribution over the fre-
quency with magnitude peaks approximately at multiples of
the fundamental frequency of each note. Hence, we design a
matched filter in the time-frequency domain in such way, that
it resembles a rise in magnitude across time and a sparse peak
across frequency. We compute the two-dimensional cross cor-
relation between the IF spectrogram and the matched filter.
For details, please refer to [14]. By summing across fre-
quency, we obtain an onset detection function o(t). Onsets
ton are then detected at all local maxima of o(t) greater than
omin = 0.2maxt o(t).1 This empirical threshold was found
based on the development set DS-1 with manually annotated
onset positions by maximizing the F-measure (FM = 0.95).

4.4. f0-tracking & Offset Detection

Two processing steps are performed to track the fundamental
frequency of each note over time: pre-estimation of the note’s
f0 and f0 tracking. First, for the n-th note, the spectral frames
in XIF are averaged over the first 20 % of the time frames be-
tween the onset positions ton(n) and ton(n + 1) to obtain an
accumulated spectrum XIF,acc,n(f). We focus on the begin-
ning period to prevent a smearing of harmonic peaks for notes
played with modulation techniques such as bending, vibrato,
and slides, which have a time-varying fundamental frequency.
The pre-estimate f̂0,n is detected at the frequency bin with the
highest cross-correlation betweenXIF,acc,n(f) and a harmonic
comb filter c(f), which has combs at the harmonic frequency
positions

fk ≈ f0 · (k + 1)
√
1 + β · (k + 1)2 (1)

1However, this approach of using a fixed threshold could lead to missed
note events for recordings with a large dynamic range.
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[15] on a logarithmic frequency axis (as used before for
XIF,n). The inharmonicity coefficient was set to β = 3E − 4,
which is an average over multiple notes from the set DS-1.
Using 500 notes from the development set DS-1 2, we com-
pared comb filters with a varying number of harmonic peaks
for the task of pitch detection. Furthermore, we compared
comb filters with peaks having unit magnitudes and comb
filters with doubled magnitude on the first two peaks. We
achieved the highest detection accuracy of 0.98 (percentage
of correctly identified note pitches) for a comb filter with 10
combs and an emphasis of the magnitudes of the first two
combs as shown in Figure 1. We did not observe an improve-
ment in pitch detection accuracy by using linearly decaying
values for the filter peaks.

The frame-wise f0-tracking is initialized at the frame
tStart, which was chosen to be in the middle of the period
used for averaging the spectrogram (as explained above).
The tracking is performed over adjacent frames in two
directions—backwards until reaching the note onset and
forwards until reaching the following onset or the last frame.
We use a continuity-constraint, i.e., in each frame, we only
consider the frequency bins around the f0 bin from the pre-
ceding frame as potential f0 candidates. Again, the highest
cross-correlation between the spectral frame and the comb
filter is retrieved.

0 100 200 300 400
0

1

2

Frequency bins (logarithmic frequency scale)

c(f)

Fig. 1. Optimal harmonic comb filter c(f) used for f0-
tracking based on a logarithmic frequency axis.

The maximum cross-correlation value is stored for each
frame—high values indicate a harmonic magnitude character-
istic of the spectrum, low values indicate a percussive, wide-
band characteristic. We determine the offset position toff(n)
of each note, where the maximum cross-correlation value re-
mains below a threshold of 0.05 for at least 4 frames or a new
note begins.

4.5. Spectral Envelope Modeling

Here we model the spectral magnitude envelope of a given
note using a simple parametric model. We focus on the fun-
damental frequency and the overtones and neglect wide-band
noise-like signal components such as the attack transients.
The main motivation is to parametrize all possible spectral en-
velopes of bass guitar notes using a simple model. Each time
frame in the STFT magnitude spectrumX(f, t) is modeled as

2The 50 notes played with the dead-note expression style were excluded
since they are percussive without a perceivable stable pitch

a sum of magnitude-scaled atom functions hX(f) shifted in
frequency, which represent the harmonic components:

X(f, t) ≈
NHarm∑
k=0

ak(t) hX (f − fk(t)) (2)

The time-varying harmonic magnitudes are denoted as ak(t).
The atom function hX(f) is the Fourier transform of the Han-
ning window h(t), which is applied in the time domain to
compute the STFT spectrogram X .

We initially estimate the inharmonicity coefficient β in
(1) at tStart in the beginning of the note decay part (com-
pare Section 4.4) and assume it to be constant over the du-
ration of the note. Therefore, we perform a grid search within
β̂ ∈ [0, 0.001]. For each estimate of β̂, we compute the hypo-
thetical spectrum using (1). We use an optimization algorithm
to find the set of coefficients ak and β which best describe the
observed spectrum (see [14] for more details). After the en-
velope modeling, each note is described by a set of envelope
parameters [ak(t), β, f0(t)], which are then used for feature
extraction as will be described in the following sections. In
Figure 2, an example of the note modeling is shown for a
bass guitar note with vibrato. The magnitude envelopes of the
overtones were well-captured (including the typical phenom-
ena of string beating [15]), attack transients were neglected
due to the discussed modeling approach.
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Fig. 2. STFT spectrogram X(f, t) of a vibrato note: original
(left) and modeled (right). The start frame for the optimiza-
tion is shown as vertical line in the right figure.

4.6. Estimation of Plucking Style, Expression Style, and
String Number

In order to estimate the instrument-level parameters plucking
style, expression style, and string number, we extract various
audio features and train a statistical classification model for
each parameter based on given training examples from the
development set DS-2. For instance, we compute the spectral
centroid, harmonic magnitude slope, or inharmonicity factor
as features. The full set of feature is detailed in [16, 4, 5].

For each classifier, we first normalize the feature values
to zero mean and unit variance. Second, the supervised fea-
ture selection method Inertia Ratio Maximization using Fea-
ture Space Projection (IRMFSP) [17], which takes the class
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Fig. 3. Confusion matrices for the estimation of instrument-level parameters. All values given in percent.

labels into account, is applied to reduce the dimensionality
of the feature space to D = 60. We used features as de-
scribed and listed in [5]. Third, the feature space transforma-
tion method Linear Discriminant Analysis (LDA) is applied
to further reduce the dimensionality of the feature space to
D = Nclasses − 1. Finally, a Support Vector Machine (SVM)
classifier with a radial basis function (RBF) kernel is trained
for each of the three classification tasks. The fret number is
derived depending on the expression style, three cases are dif-
ferentiated. For dead-notes, the fret number is not considered
to be relevant and the string number is set to the string number
of the closest note, which was played in one of the expression
styles normal, vibrato, bending, or slide (this makes the bass
line easier to play). Since harmonics with a given mode can
be played on multiple fret positions, we set the fret number
to be preferably close to the fret numbers of previous notes
based on the estimated mode m̂. The fret number is derived
from the pitch and the string number as explained in [16].

5. EVALUATION
5.1. Dataset

The evaluation of the proposed methods is performed under
idealized conditions. The previously published IDMT-SMT-
BASS-SINGLE-TRACKS3 dataset is used for evaluation. It
consists of 17 bass lines that cover different music styles
(blues, rock, funk, bossa nova, and hip hop). The bass lines
consist of around 1000 notes and cover all discussed plucking
and expression styles as well as all 4 strings of the bass guitar.

For brevity we only present the results for the plucking
and expression styles and string number. More detail can be
found for instance in [18].

5.2. Instrument-level Evaluation

In order to evaluate the estimation of the instrument-related
parameters plucking style (PS), expression style (ES), and
string number (SN), three classification experiments were
performed as follows. In order to eliminate the onset and
pitch estimation as potential error sources, we use ground

3see http://www.idmt.fraunhofer.de/en/Departments_
and_Groups/smt/bass_lines.html

truth annotations for the note pitch, onset, and offset instead.
The three classifiers are trained with notes from the develop-
ment set DS-2.

The confusion matrices for the estimation of the
instrument-related parameters PS, ES, and SN are shown
in Figure 3. For PS and SN classification, a main diagonal
is clearly visible—mean classification accuracy values of
0.64 and 0.75 were achieved. For the ES classification, only
the BE class shows satisfying results. The other classes—
especially NO and DN show strong confusions towards other
classes. The mean accuracy for ES classification is 0.44. For
the plucking style classification, we observe confusions be-
tween the fingerstyle (FS) and muted (MU) class, which only
differ in the amount of damping while resemble each other
with respect to the spectral envelope. Also the confusion
between the two slap classes slap-pluck (SP) and slap-thumb
(ST) seems reasonable due to their similar sound production
on the instrument. The observed confusions between NO
and BE might result from small f0 fluctuation for regular
notes without modulation (NO), which can be confused as
bending notes (BE). Also, percussive dead-notes (DN) some-
times show a very short presence of a fundamental frequency
and overtones, this might explain the confusions towards the
harmonics (HA) class.

To the best knowledge of the authors, only in [5], a sys-
tem for estimating the same parameters from electric guitar
recordings was presented. The authors achieved slightly bet-
ter accuracy values for string number (0.82 for 6 classes),
plucking style (0.93 for 3 classes), and expression style (0.83
for 6 classes), but based on an additional filtering of non-
plausible classification results.

6. CONCLUSIONS

We presented approaches to automatically transcribe and esti-
mate parameters from isolated bass guitar recordings for a re-
alistic model of bass guitar sounds. We found that the pluck-
ing and expression style of the musician playing the instru-
ment are an important part of the character of the sound. Our
experiments showed that these parameters can be estimated
from isolated instrument recordings with relatively high ac-
curacy.
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