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ABSTRACT

In this paper, a novel noise-shaping method for Multi-Channel Lin-

ear Prediction (MCLP) is presented. Without special consideration,

the quantization noise of the prediction error poses a serious problem

in multi-channel prediction as each noise component distorts the re-

construction of every channel at the decoder.

The proposed method diagonalizes the system’s quantization er-

ror transfer function and thereby limits the influence of quantization

noise terms to their respective channels at the decoder. Similar to

single-channel linear prediction, a new noise-shaping filter is used

to control the trade-off between the objective Signal-to-Noise Ra-

tio (SNR) and psychoacoustic masking of quantization noise spectra

according to the spectral envelope of the predicted signal.

It is experimentally shown that the proposed method consider-

ably increases the SNR compared to the open-loop case at the ex-

pense of a slight reduction of the effective prediction gain.

Index Terms— multi-channel audio coding, inter-channel pre-

diction, noise-shaping

1. INTRODUCTION

Multi-Channel Linear Prediction, also known as vector linear predic-

tion, has been considered for general-purpose audio coding by vari-

ous authors in the past, e. g. [1], [2], [3]. Building on the principles

of multivariate autoregressive models, it represents a generalization

of scalar linear prediction in which the current sample of a signal is

estimated from a linear combination of a fixed number of preceding

samples. If an audio signal is interpreted as the output of an autore-

gressive model driven by a white noise process, estimating the model

parameters and inverse filtering allows for an efficient encoding of

the audio signal in terms of the tuple Σ = (d, ai), i. e. the prediction

error sequence and the prediction filter coefficients.

MCLP takes this idea one step further by attempting to exploit

additional correlations between individual channels of multi-channel

audio signals. In its most basic form, the formulation admits the

use of different filter orders for every filter in the prediction system

[2]. However, a rigorous proof of stability is only known in the case

where all filters have the same number of coefficients (e. g. [4] or

[5]). This case is denoted Symmetric Linear Prediction (SLP) and

is the basis for the following discussions. For comparison, multi-

channel systems where each channel is coded with the help of a ded-

icated single-channel predictor are used as well and denoted Pure

Intra-Channel Linear Prediction (PICLP) from here on.

So far, only a few publications exist which investigate the ef-

fects of quantization of the prediction error in MCLP, for instance

[6] and [7]. However, neither publication touches on the issues asso-

ciated with multi-channel open-loop prediction. Instead, they focus
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on techniques like sinusoidal extraction, or spectral band replication

for the so-called main and side signals which are obtained by apply-

ing a linear transform to the stereo prediction error vectors with the

target of minimizing the energy of the side signal. Since these results

only apply to stereo signals, more general approaches are needed to

allow for MCLP to be applied effectively to signals with more than

two channels.

In this paper, the MCLP system is introduced in Sec. 2 and a

novel integration of noise-shaping into closed-loop multi-channel

prediction in Sec. 3. A generalization of the SNR for the multi-

channel prediction system is derived in Sec. 4. The theoretical find-

ings are then validated by an experimental evaluation in Sec. 5 and

Sec. 6.

2. MULTI-CHANNEL LINEAR PREDICTION

Let x(n) ∈ R
M , n = 0, . . . , L − 1, be a digital audio signal con-

sisting of M channels. Then the prediction error vector d(n) of a

symmetric multi-channel prediction system reads

d(n) = x(n) −

K∑

ν=1

Aνx(n − ν) , (1)

where Aλ ∈ R
M×M ∀λ = 1, . . . , K. For M = 2, this describes a

stereo prediction system as depicted in Fig. 1. The MMSE criterion

σ2
d := E

{
‖d(n)‖2

2

}
→ min. associated with Eq. (1) for Aλ leads

to [8]
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where C
xx

λ =
∑L−1+λ

n=0
x(n)x(n − λ)H if the expected value

E {·} is replaced by the arithmetic mean multiplied by L. This

system can either be solved directly by inversion or more conve-

niently with a generalization of the Levinson-Durbin algorithm –

the so-called block Levinson recursion – which is omitted here for

brevity. See [8] for a thorough treatment of the subject. Denote now

with H(z) = IM −
∑K

ν=1
Aνz−ν = IM − (Aij(z))1≤i,j≤M

the transfer matrix of the analysis filter in the z-domain with the M -

dimensional identity matrix IM . The prediction error produced by

this system then reads D(z) = H(z)X(z). According to [4], the

corresponding synthesis filter matrix G(z) = H(z)−1 is guaran-

teed to be stable – that is to say det H(z) forms a minimum-phase

polynomial – if the optimal filter coefficients are calculated from

Eq. (2). Transmitting d(n) alongside the parameters Aλ therefore

allows perfect reconstruction of x(n) using G(z) at the receiver.
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Fig. 1: Example of an MCLP system: analysis filter of a stereo pre-

dictor

3. QUANTIZATION

3.1. Open-Loop Prediction

Consider now the quantization of d(n) on the encoder side ac-

cording to Fig. 2. For simplicity, assume a uniform quantizer

Q as parametrized by the word length wQ (in number of bits)

such that a quantized finite energy signal can be described in

the z-domain as D̃(z) = D(z) + ∆(z). With this, the recon-

structed signal on the receiver side reads X
′(z) = G(z)D̃(z) =

G(z) (D(z) + ∆(z)) = X(z) + G(z)∆(z). The last term in

this equation demonstrates the problem of quantization noise in

Multiple-Input Multiple-Output (MIMO) systems. Since G(z)∆(z)
constitutes a matrix-vector product, the individual reconstructed

spectral components of X(z) are superimposed by M filtered ver-

sions of different quantization error spectra leading to a deterioration

of the effective SNR which is the main issue of open-loop prediction

in the multi-channel case.

From conventional intra-channel prediction it is known that fil-

tering the quantization noise of the prediction error with the synthe-

sis filter at the receiver has psychoacoustic advantages as the white

noise spectrum is shaped according to the spectral envelope of the

original signal and thereby partially masked (see e. g. chapter 8.3 in

[9]). In the SLP case, however, only the intra-prediction synthesis

filters Gii(z) follow the spectral envelope of the input signals. This

means that any other noise components that are filtered with Gij(z)
for i 6= j are not necessarily hidden in the spectral valleys of Xi(z).

H(z) +

∆(n)
x(n) d(n) d̃(n)

Q

Fig. 2: Open-loop quantization in the MCLP case

3.2. Closed-Loop Prediction and Diagonalization

In order to restrict the influence of the quantization error terms to

their respective reconstruction channels, the quantization error vec-

tor is explicitly calculated during encoding, and fed back to the sys-

tem input after filtering it with the transfer matrix F (z) as depicted

in Fig. 3. The prediction error produced by this system is given as

D̃
′(z) = D(z) − F (z)∆(z) + ∆(z) (3)

= D(z) + (IM − F (z))︸ ︷︷ ︸
=:W (z)

∆(z) . (4)

Consequently, the reconstructed signal at the decoder now reads

X
′(z) = G(z)D̃′(z) (5)

= X(z) + H(z)−1
W (z)∆(z) . (6)

The term R(z) = X
′(z)−X(z) = H(z)−1

W (z)∆(z) represents

the residual reconstruction error at the decoder.

Two special cases arise naturally from this formulation. Firstly,

for F (z) = 0M , the open-loop prediction case as shown in Fig. 2

is found. Secondly, for F (z) = A(z), one has X
′(z) = X(z) +

∆(z). This corresponds to the case of closed-loop prediction analo-

gous to PICLP. In this case, only the quantization error term ∆i(n)
of the prediction error di(n) is superimposed on the signal xi(n) to

form the reconstruction x′
i(n). This special case therefore already

removes the problem of excessive quantization noise in the recon-

structed channels. While this configuration increases the objective

SNR [9], it does not have any psychoacoustic advantages as the quan-

tization error appears unfiltered in the output signal of the decoder

(cf. Sec. 4).

A third option for the choice of F (z) is given in the form of

A
(

z
α

)
for α ∈ [0, 1] which generalizes the well-known noise-

shaping concept from single-channel prediction to multi-channel

predictors by enabling a trade-off between psychoacoustic masking

(α → 0), and objective improvement of the SNR (α → 1). This

option, however, suffers from the same drawbacks as open-loop

prediction when applied to SLP systems as all quantization error

spectra are still present in all output channels.

In order to incorporate noise-shaping into the system, and at the

same time restrict the influence of the quantization error ∆i(z) to

the reconstruction of channel i, the following constraint is imposed

on the structure of the quantization error transfer function:

H(z)−1
W (z)

!
= diag {E1(z), . . . , EM (z)} (7)

⇔ W (z) = H(z)diag {E1(z), . . . , EM (z)} (8)

for a set of causal filters {Ei(z)}M

i=1. For the prototype filters Ei(z)
to function as noise-shaping filters, they are defined as

Ei(z) =
Hi

(
z

αi

)

Hi(z)
(9)

with αi ∈ [0, 1] as before. Note that Hi(z) = 1 − Ai(z) cor-

responds to the analysis filter of a regular intra-prediction system

for channel i. The reason why Hi(z) has to be used instead of

Hii(z), i. e. the intra-prediction filters of H(z) of the SLP sys-

tem, is that there is no guarantee that the filters Hii(z) satisfy the

minimum-phase property1. Again, two special cases can be consid-

ered. Firstly, for αi = 0 ∀i one has Ei(z) = 1
Hi(z)

. This means

that the quantization error of channel i is filtered in the same way

1This also poses a serious issue in finding appropriate representations of
the SLP analysis filter which preserve stability of the synthesis filter in the
presence of quantization noise. See [10], for instance.
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Fig. 3: Generalization of Fig. 2 which incorporates noise-shaping into the prediction setup by feeding back a filtered version of the quantization

error. For F (z) = 0M , the setup is identical to Fig. 2.

as in the decoder of a pure intra-channel predictor in open-loop con-

figuration. Note that this does not imply W (z) = IM , and there-

fore leads to a different system than discussed in Sec. 3.1. Secondly,

for αi = 1 ∀i, diag {E1(z), . . . , EM (z)} degenerates into an iden-

tity matrix and therefore leads to the closed-loop prediction case for

which W (z) = H(z) holds.

4. DETERMINATION OF THE MULTI-CHANNEL

SIGNAL-TO-NOISE RATIO

From PICLP, it is known that the SNR ρx|r between the input signal

x(n) and its reconstruction error r(n) in open-loop configuration is

identical to the SNR ρd|∆ between the prediction residual and its

quantization error, e. g. [9]. In closed-loop prediction, on the other

hand, ρx|r increases with the achievable prediction gain according

to ρx|r = Gpρd|∆, e. g. [9]. These results can be generalized for the

multi-channel case.

Consider the Power Spectral Density (PSD) matrix of the predic-

tion error defined as

Φdd

(
e

jΩ
)

:= D
(
e

jΩ
)

D
(
e

jΩ
)H

(10)

= H
(
e

jΩ
)

X
(
e

jΩ
)

X
(
e

jΩ
)H

H
(
e

jΩ
)H

(11)

=: H
(
e

jΩ
)

Φxx

(
e

jΩ
)

H
(
e

jΩ
)H

. (12)

Solving this equation for Φxx

(
ejΩ

)
yields

Φxx

(
e

jΩ
)

= H
(
e

jΩ
)−1

Φdd

(
e

jΩ
) (

H
(
e

jΩ
)H

)−1

. (13)

Assume now that x(n) is the output of a multivariate autoregres-

sive model, and assume perfect knowledge of the underlying signal

statistics. Then {d(0), d(1), . . . } is a sequence of realizations

of an i. i. d.2 zero-mean random vector with correlation matrix

C
dd

λ = E
{

d(n)d(n − λ)H
}

= σ2
IM δ(λ). As per the Wiener-

Khinchin theorem [9], the corresponding PSD matrix therefore reads

Φdd

(
ejΩ

)
= σ2

IM . Define now the multi-channel prediction gain

Gp as

Gp =
E

{
‖x(n)‖2

2

}

E {‖d(n)‖2
2}

=
tr C

xx

0

tr C
dd

0

=
ϕxx (0)

ϕdd (0)
. (14)

With

ϕxx (0) =
1

2π

∫ π

−π

tr Φxx

(
e

jΩ
)

dΩ (15)

and Eq. (13), the prediction gain Gp can thus be expressed as

Gp =
1

2π

∫ π

−π

tr

[
H

(
e

jΩ
)−1

(
H

(
e

jΩ
)H

)−1
]

dΩ . (16)

2independent and identically distributed

Consider now the SNR ρx|r at the decoder which reads

ρx|r =
ϕxx (0)

ϕrr (0)
=

ϕxx (0)

ϕrr (0)

ϕdd (0)

ϕdd (0)
= Gp

ϕdd (0)

ϕrr (0)
, (17)

where ϕrr (0) = tr C
rr

0 is the power of the reconstruction residual

r(n) = x
′(n)−x(n). In the case of open-loop prediction, the resid-

ual r(n) corresponds to the quantization error ∆(n), filtered by the

synthesis filter G(z). Using the same reasoning for the distribution

of ∆(n) that was previously used for d(n), it then follows with

Φrr

(
e

jΩ
)

= H
(
e

jΩ
)−1

Φ∆∆

(
e

jΩ
) (

H
(
e

jΩ
)H

)−1

(18)

for the PSD matrix of r(n):

ϕrr (0)

ϕ∆∆ (0)
= Gp . (19)

Substituting Eq. (19) in Eq. (17) therefore yields

ρx|r =
ϕdd (0)

ϕ∆∆ (0)
= ρd|∆ . (20)

This result demonstrates that the SNR of the reconstructed signal

in the open-loop prediction case is identical to the SNR of the pre-

diction error after quantization. Most importantly, it shows that the

SNR is independent of the prediction gain. In the closed-loop case,

on the other hand, one has ϕrr (0) = ϕ∆∆ (0) since r(n) = ∆(n)
such that the SNR corresponds to

ρx|r = Gp
ϕdd (0)

ϕ∆∆ (0)
= Gpρd|∆ . (21)

5. EVALUATION

In order to evaluate the performance of the proposed system, two

experiments are carried out on the test corpus for the AMR-WB+

codec [11] which is composed of roughly 10 minutes of stereo

speech and music recordings. With a given sampling rate of 48 kHz,

non-overlapping frames of size L = 1024 samples
(
=̂ 21.3 ms

)
are

considered. A uniform mid-tread quantizer with an operating range

of [−1, 1] is used to quantize the prediction error signals produced

by an SLP system of order K = 16. Since the coefficients of the

noise-shaping filters Ei(z) do not have to be transmitted to the

decoder, the filter order can be chosen arbitrarily. Informal experi-

ments reveal that the system performance is mostly unaffected if the

filter order is chosen sufficiently high. The order is therefore set to

KM which corresponds to the filter order of a comparable PICLP

system that uses the same number of coefficients per frame as an

SLP system of order K. The effective multi-channel prediction gain

G̃p =
ϕxx (0)

ϕ
d̃′d̃′

(0)
(22)
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and the SNR ρx|r are used as objective measures to quantify the

performance of the system under consideration.

6. RESULTS

In the first experiment, the effective prediction gain and SNR are

measured for the open- and closed-loop prediction cases, as well as

for the novel noise-shaping method with αi = 0.7 ∀i. The con-

sidered quantizer word lengths are wQ = 2, . . . , 16. As shown

in Fig. 4, the prediction gain is consistently highest in the case of

open-loop prediction. Beyond wQ = 12, the achievable gains of all

systems converge to the gain of a lossless reference system. Even

for wQ = 16, however, the SNR in the open-loop case merely

amounts to 34.3 dB (cf. Fig. 5). This emphasizes the devastating

effect of quantization on open-loop prediction in MCLP caused by

the superposition of filtered quantization error signals of neighbor-

ing channels. The proposed method effectively mitigates the prob-

lem at the expense of a slightly reduced prediction gain. Particularly,

in the closed-loop and noise-shaping cases the achieved SNRs for

wQ = 16 are 84.1 dB and 74.5 dB, respectively. The highest per-

formance difference is observed for wQ = 9 where the closed-loop

configuration outperforms the open-loop system by 50.1 dB. On av-

erage, the performance difference between open- and closed-loop

prediction is 45.5 dB.

Similar to a PICLP system, the objective performance of the

noise-shaping system is generally worse than in the closed-loop case,

while still outperforming the open-loop system. The largest perfor-

mance difference between open-loop and noise-shaping with αi =
0.7 amounts to 40.2 dB for wQ = 12. The mean SNR difference be-

tween closed-loop and noise-shaping is 10.1 dB. This expected dete-

rioration represents the trade-off between a reduction in the objective

SNR and psychoacoustic masking of the quantization error. While

the SNR is optimal in the case of closed-loop prediction, the sub-

jective quality may still improve for αi < 1 due to shaping of the

quantization error spectra according to the spectral envelope of the

original signal.

2 4 6 8 10 12 14 16
wQ [bits]

0

5

10

15

20

25

G̃
p

[d
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Open-loop prediction

Closed-loop prediction

Noise-shaping (αi = 0.7)

Fig. 4: Effective prediction gain for different quantizer word lengths

In the second experiment, the influence of the noise-shaping fac-

tors αi ∈ [0, 1] is investigated for a fixed quantizer word length of

wQ = 12. For simplicity, the same noise-shaping coefficient is used

for all channels. The effective prediction gain and SNR for this setup

can be found in Fig. 6. As the graphs show, both prediction gain and

SNR monotonically increase with αi. Again, this is in accordance

with the behavior of a comparable PICLP system. Note that this ex-

periment merely verifies the correct behavior of the proposed system

but does not indicate an appropriate value range for the choice of the

parameter αi.
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Fig. 5: SNR for different quantizer word lengths
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Fig. 6: Effective prediction gain (top) and SNR (bottom) for different

noise-shaping coefficients with wQ = 12

7. CONCLUSION

In this contribution, the effect of quantization of the prediction er-

ror in Multi-Channel Linear Prediction (MCLP) has been investi-

gated. It was theoretically and experimentally shown that MCLP

is intrinsically more susceptible to reconstruction errors caused by

quantization of the prediction error than Pure Intra-Channel Linear

Prediction (PICLP). A novel approach to mitigate excessive deterio-

rations of the SNR was proposed which restricts the influence of the

quantization error imposed on a particular channel to the reconstruc-

tion of the same channel in the decoder. The new method represents

a generalization of the noise-shaping principle known from single-

channel linear prediction that allows for psychoacoustic masking of

the quantization error at the expense of a slight reduction of the re-

sulting SNR. For reasonably high quantizer word lengths, the effec-

tive prediction gain is barely affected by the new method while the

SNR improves by as much as 50 dB compared to regular open-loop

prediction.
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