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ABSTRACT

In this paper a problem in transient noise suppression for audio
streams in laptop and netbook devices is addressed. One or more
microphones record voice signals which are corrupted with ambient
noise and also transient noise from keyboard and mouse clicks.
In the current work, a synchronous reference microphone is em-
bedded in the keyboard which allows for measurement of the key
click noise, substantially unaffected by the voice signal and am-
bient noise. An algorithm is here presented for incorporation of
the keybed microphone as a reference signal in a signal restoration
process for the voice part. The problem is substantially complicated
by the presence of nonlinear vibarations (we postulate) in the hinge
and casework of the laptop, which renders a simple linear suppressor
ineffective in some cases. Moreover, the transfer functions between
key clicks and voice microphone depend strongly upon which key
is being clicked. A very low-latency solution is proposed in which
short-time transform data is processed sequentially in short frames
and a robust statistical model is formulated and estimated using
Bayesian inference procedures. Results with real recordings show
a significant reduction of typing artefacts at the expense of small
amounts of voice distortion.

Index Terms— Key-click noise, transient noise, audio enhance-
ment, Bayesian methods, Expectation-maximisation (EM)

1. INTRODUCTION

In many modern telephony and teleconferencing environments it is
common to encounter annoying keyboard typing noise, both simul-
taneously present with the speech and in the ‘silent’ pauses between
speech. A typical scenario is where someone in a conference call is
taking meeting notes on their laptop or netbook while the meeting
is taking place, or someone checks their emails during a voice call.
Users report significant annoyance when this type of noise is present
in telephony data and hence it is very desirable to remove it without
introducing significant perceived distortions to the desired speech.
Clearly for successful operation the processing must operate easily
in real time on standard hardware and must have very low latency so
that there is no irritating delay in speaker response. In more general
audio restoration tasks, where real-time low-latency processing is
less of an issue, model-based source separation and template-based
methods have been used successfully for removing transient noise
[1, 2, 3]. More modern approaches such as non-negative matrix
factorisation (NMF) [4] and independent component analyis (ICA)
could be possible candidates for this type of restoration, but they
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both have issues of latency and processing speed. As another possi-
bility, restoration can be made more robust by inclusion of OS mes-
sages indicating which key has been pressed and when. However,
the uncertain delays involved in these messages on many systems
render this approach impractical at present, though likely to be of
use in future systems.

So far, approaches to the keystroke removal problem have used
single-ended methods in which the keyboard transients must be re-
moved ‘blind’ from the audio stream without access to any tim-
ing or amplitude information about the key strikes, see for example
[5, 6, 7, 8, 9, 10] for work in typing suppression and in the related
area of tapping noise suppression. Clearly there are issues of reliabil-
ity and signal fidelity with such approaches, and speech distortions
may be audible and/or keystrokes are left untouched. In contrast with
existing approaches, we introduce a reference microphone input sig-
nal for the keyboard noise, we introduce a new robust Bayesian sta-
tistical model for regressing the voice microphone on the keyboard
reference microphone, which allows for direct inference about the
desired voice signal while marginalising the unwanted power spec-
tral values of the voice and keystroke noise, and we develop a simple
and efficient Expectation-maximisation (EM) procedure for fast, on-
line enhancement of the corrupted signal.

2. RECORDING SETUP

Here we study an alternative to the standard setup in which a refer-
ence microphone is available which records the sounds made by the
key strikes directly, and uses this as an auxiliary audio stream to aid
the restoration of the primary voice channel. We have available syn-
chronised recordings sampled at 44.1kHz of the voice microphone
waveform, XV , and the keybed microphone waveform, XK . The
keybed microphone is placed below the keyboard in the body of the
device, and is well acoustically insulated from the surrounding en-
vironment. It can be reasonably assumed to contain very little of
the desired speech and ambient noise, and to serve as a good refer-
ence recording of the contaminating keystroke noise. See [11] for
more detail. We will assume from now on that the audio data have
been transformed into a time-frequency domain using a suitable on-
line method such as the short-time Fourier Transform (STFT). In the
case of the STFT then, XV,j,t and XK,j,t will represent complex
frequency coefficients at some frequency bin j and time frame t, al-
though we will omit these indices where it introduces no ambiguity.

3. MODELLING AND INFERENCE

A first approach might be to model the voice waveform assuming a
linear transfer function Hj at frequency bin j between the reference
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Fig. 1. Example simultaneously recorded waveforms; top: voice
microphone with simultaneous speech and key strokes; bottom:
Keybed microphone with (principally) just keyboard strikes.

microphone and the voice microphone, and assuming that no speech
contaminates the keybed microphone: XV,j = Vj +HjXK,j , omit-
ting time frame index, where V is the desired voice signal and H
is the transfer function from measured keybed microphone XK to
voice microphone. There are some difficult issues with this formu-
lation, however, not least being that keystrokes from different keys
will have different transfer functions, so that either a large library
of transfer functions for each key needs to be learned, or the system
must be very rapidly adaptive when a new key is pressed. A more
serious concern, however, is that we have observed very major ran-
dom differences in experimentally measured transfer functions from
a real system between repeated key strikes on the same key. This
we postulate is due to non-linear ‘rattle’-type oscillations that are
set up in typical hardware systems - in particular, the Pixel netbook
that we studied has a highly nonlinear response through the hinge
mechanism of the case lid. Thus, while a linear transfer function ap-
proach was found to succeed in certain examples, using for example
an adaptation of the methods in [12], it was unable to completely
remove the effects of the keystroke disturbances in other cases.

Here then we adopt a robust signal-based approach, in which the
random perturbations and nonlinearities in the transfer function are
modelled as random effects in measured keystroke waveform K at
the voice microphone:

XV,j = Vj +Kj (1)

where V is the desired voice signal and K is the undesired keyclick.

3.1. Robust model and prior distributions

A statistical model is now formulated for both the voice and key-
board signals in the frequency domain. These models obey the
known characteristics of speech signals in the time-frequency do-
main, i.e. sparsity and heavy-tailed (non-Gaussian) behaviour, see
e.g. [13, 14, 15, 16, 17, 18, 19, 20] for our recent work in this area.
Now, we model Vj as a conditional complex normal distribution
with random variance that is distributed as an inverted gamma dis-
tribution, which is well known to be equivalent to modelling Vj as a
heavy-tailed Student-t distribution, see [21, 22],

Vj |σVj ∼ NC(0, σ
2
Vj ), σ

2
Vj ∼ IG(αV , βV ) (2)

where ‘∼’ denotes that a random variable is drawn according to
the distribution to the right, NC is the complex normal distribution

and IG is the inverted-gamma distribution [21]. The prior parame-
ters (αV , βV ) are tuned to match the spectral variability of speech
and/or the previous estimated speech spectra from earlier frames,
see Results section for more information. Such a model has been
found effective in a number of audio enhancement/separation do-
mains [13, 14, 15, 16, 17, 18], and is in contrast with other well
known Gaussian or non-Gaussian statistical speech models, see e.g.
[23, 24, 25, 26, 27].

A novel component of the current work is that the keyboard com-
ponentK is decomposed also in terms of a heavy-tailed distribution,
but with its scaling regressed on the secondary reference channel
XK,j :

Kj |σK,j , α,XK,j ∼ NC(0, α2σ2
K,j |XK,j |2), σ2

K,j ∼ IG(αK , βK)
(3)

with α a random variable which scales the whole spectrum by a ran-
dom gain factor1:

α2 ∼ IG(αα, βα). (4)
We make the following conditional independence assumption about
the prior distributions: all voice and keyboard components V and
K are drawn independently across frequencies and time conditional
upon their scaling parameters σV/K , and also that these scaling pa-
rameters are independently drawn from the above prior structures
conditional upon the overall gain factor α. Moreover, all of these
components are a priori independent of the value of the input re-
gressor variable XK . This assumption is reasonable in many cases
and simplifies the form of the probability distributions considerably.

The motivation for this approach is that the frequency response
between keybed microphone and voice microphone has been ob-
served to have an approximately constant gain magnitude response
across frequencies (this is modelled as the unknown gain α, but sub-
ject to random perturbations of both amplitude and phase (modelled
by the IG distribution on σ2

K,j)). In order to remove an obvious
scaling ambiguity in the product α2σ2

K,j , the maximum of the prior
for σ2

K,j is set to 1. The remaining prior values are tuned to matched
the observed characteristics of the real recorded datasets, see Results
section.

Since the ultimate task is one of estimating Vj based only upon
the observed signalsXV andXK , a suitable object for inference will
be the posterior distribution,

p(V |XV ,XK) =∫
α,σK ,σV

p(V, α, σK , σV |XV , XK)dαdσKdσV ,

where (σK , σV ) is the collection of scale parameters {σK,j , σV,j}
across all frequency bins j in the current time frame. From the pos-
terior distribution we may extract the expected valueE[V |XV , XK ]
for a MMSE estimation scheme, or some other estimate based per-
haps on a perceptual cost function, see [28, 29] for methodology.
Such expectations can be handled routinely using Bayesian Monte
Carlo methods, see e.g. [30, 31]. However, Monte Carlo schemes
would most likely render the processing non-real-time, so we avoid
these here. Instead we opt for a MAP estimation using a generalised
Expectation-Maximisation (EM) algorithm:

V̂ , α̂ = argmaxV,αp(V, α|XV , XK),

where we have included α in the optimisation because it avoids an
extra numerical integration, which could be expensive.

1In cases where an approximate spectral shape is known for the scaling,
say fj , which might for example be a low-pass filter response, this can be
incorporated in all the subsequent working quite simply by replacing α with
αfj throughout.
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3.2. Development of EM Algorithm

In the EM algorithm latent variables to be integrated out are first de-
fined, and these are (σK , σV ) for this model. Then the algorithm
operates iteratively, starting with an initial guess (V 0, α0). At it-
eration i, an expectation Q of the complete data log-likelihood is
computed, here2

Q((V, α),(V (i), α(i)))

= E[log(p((V, α)|XK , XV , σV , σK))|(V (i), α(i))]

where (V (i), α(i)) is the ith iteration estimate of (V, α). The expec-
tation is taken wrt p(σV , σK |α(i), V (i), XK , XV ), which simplifies
under the conditional independence assumptions to

p(σV ,σK |α(i), V (i), XK , XV )

=
∏
j

p(σV,j |V (i)
j ) p(σK,j |K(i), α(i), XKj ) (5)

where K(i)
j = XV,j − V (i)

j is the current estimate of the unwanted
keystroke coefficient at frequency j.

Similarly, applying the earlier conditional independence as-
sumptions, the log-conditional distribution here may be expanded
over frequency bins j using Bayes’ Theorem as follows:

log(p((V, α)|XK , XV , σV , σK))

+
= log(p(α2)) +

∑
j

log(p(Vj |σV,j))

+ log(p(XV,j |XK,j , Vj , σK,j , α))

where the notation +
= means ‘LHS = RHS up to an additive constant’,

in this case a constant that does not depend on (V, α).
The E-step thus simplifies to:

E[ log(p((V, α)|XK , XV , σV , σK))|(V (i), α(i))]

+
= E log(p(α2)) +

∑
j

E log(p(Vj |σV,j))

+ E log(p(XV,j |XK,j , Vj , σK,j , α))

= Eα +
∑
j

EVj + EKj

where Eα, EVj and EKj are defined from the line above. Now, the
required log-likelihood term and prior for Vj are readily obtained
from Eqs. (1), (3) and (2), leading to the following expressions for
the expectations Eα, EVj and EKj :

Eα = log(p(α2)), EVj = −1

2
|Vj |2E

[
1

σ2
Vj

]
,

EKj = −2 log(α)−
|(XVj − Vj)|2

2α2|XK,j |2
E

[
1

σ2
K,j

]
.

Now, consider E
[

1
σ2
Vj

]
. Under the conjugate choice of prior

density as in Eq. (2), and again making use of the conditional inde-

2Note that this is the Bayesian formulation of EM in which a prior distri-
bution is included for the unknowns V and α, see e.g. [32]

pendence assumptions as in Eq. (5)

p(σ2
Vj |V

(i)
j )

∝ 1

2πσ2
Vj

exp

(
− 1

2σ2
Vj

|V (i)
j |

2

)
IG(σ2

V,j |αV , βV )

= IG

(
σ2
Vj |αV + 1, βV +

|V (i)
j |

2

2

)

Hence, at the ith iteration:

E

[
1

σ2
Vj

]
=

αV + 1

βV +
|V (i)
j |

2

2

,

which is the mean of the corresponding gamma distribution for
1/σ2

V,j . For prior mixing distributions other than the simplest
inverted-gamma, this expectation could be computed numerically
and stored for example in a look-up table.

By similar reasoning the conditional distribution for σ2
K,j in Eq.

(5) is obtained as:

p(σ2
Kj |XK,j , α

(i),K
(i)
j ) ∝ 1

2πσ2
K,jα

i2|XK,j |2

exp

(
− 1

2σ2
K,jα

2|XK,j |2
|Kj

(i)|2
)
IG(σ2

K,j |αK , βK)

= IG

(
αK + 1, βK +

|K(i)
j |

2

2α(i)2|XK,j |2

)
.

Hence, at the ith iteration:

E

[
1

σ2
K,j

]
=

αK + 1

βK +
|K(i)
j |

2

2α(i)2|XK,j |2

.

Finally, having computed these expectations and substituted them
into Q, the M-step would ideally maximise Q jointly wrt (V, α).
Because of the complex structure of the model, this cannot be done
quite in closed form for this Q function. We propose instead to take
advantage of iterative formulae for maximising V with α fixed, then
maximising α with V fixed at the new value, and running this for
a few steps within each EM iterstion. Such a scheme is a Gener-
alised EM, which still guarantees that the posterior probability is
non-decreasing at each iteration and hence can be expected to con-
verge to the true MAP solution with increasing iteration number.

Omitting the fairly straightforward algebraic steps in finding the
maxima of Q wrt V and α, we arrive at the following M-step up-
dates. Notation is such that we initialise the Generalised M-step
at each iteration with V

(i+1)
j = V

(i)
j , K

(i+1)
j = XV,j − V

(i)
j ,

and α(i+1) = α(i), the final values from the previous iteration, and
we then iterate several steps of the following fixed point equations,
which refine the estimates at the new iteration i + 1. Note that the
update for Vj is essentially a Wiener filter gain, which is applied
independently and in parallel for all frequencies j = 1, ..., , J ,

V
(i+1)
j =

E

[
1
σ2
Vj

]

E

[
1
σ2
Vj

]
+

E

[
1

σ2
K,j

]
α(i+1)2|XK,j |2

XV,j (6)
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and for α:

α(i+1) =

√√√√√βα +
∑
j E

[
1

σ2
K,j

]
1

2|XK,j |2

(
|K(i+1)

j |2
)

αα + 1 + J
(7)

where J is the total number of frequency bins.
Once the EM procedure has run for a number of iterations and

is satisfactorily converged, the resulting spectral components Vj are
taken back to the time domain via the inverse FFT (in the STFT case)
and reconstructed into a continuous signal by windowed overlap-add
procesdures.

4. EXPERIMENTAL RESULTS

The methods were tested on files recorded from the Pixel Chrome-
book [33], sampling synchronously at 44.1kHz from the voice and
keybed microphones, and processing using EM was carried out in
Matlab. Frame lengths of 1024 samples were used for an STFT
transform, with 50% overlap and Hanning analysis windows. It was
possible to record extracts of voice alone, and then of key strokes
alone, then adding together the signals recorded in order to obtain
corrupted microphone signals for which ‘ground truth’ restorations
are available. Prior parameters for the Bayesian model were fixed
for the simulations as follows:

• Prior σ2
V,j ∼ IG(αV , βV,j) (note we now make the scale pa-

rameter βV explicitly frequency-dependent). The degrees of
freedom were fixed to αV = 4 in order to allow a degree
of flexibility and heavy-tailed behaviour in the voice signal.
The parameter βV,j was set in a frequency-dependent man-
ner as follows: the final EM-estimated voice signal from the
previous frame, |V̂j |2 was used to give a prior estimate of
σ2
V,j for the current frame. βV,j was then fixed such that the

mode of the IG distribution was equal to |V̂j |2, i.e. we set
βV,j = |V̂j |2(αV + 1). This encourages some spectral con-
tinuity from previous frames, which reduces artifacts in the
processed audio, and also allows for some reconstruction of
very heavily corrupted frames based on what has gone before.

• Prior σ2
K,j ∼ IG(αK , βK). This is fixed across all frequen-

cies to αK = 3, βK = 3, leading to a mode at σ2
K,j = 0.75.

• Prior α ∼ IG(αα, βα): αα = 4, βα = 100, 000(αα +
1), which places the prior mode for α2 at 100, 000, which is
tuned by hand from experimental analysis of data recorded
with just keystroke noise present.

Various configurations were tested for the EM, and it was found that
results converged with little further improvement after around 10 it-
erations, with 2 sub-iterations of the generalised M-step of Eqs. (6)
and (7) per full EM iteration, and these parameters were then fixed
for all subsequent simulations.

One further important detail is that a time-domain detector was
devised to flag corrupted frames, and processing was only applied
to frames for which detection was flagged, hence avoiding unneces-
sary signal distortions and wasted computations through processing
in uncorrupted frames. This detector comprised a rule-based comb-
nination of detections from the keybed microphone signal and the
two available (stereo) voice microphones. Within each stream, de-
tections are based on an autoregressive (AR) error signal, much as
in [1] Ch.4, and frames are flagged as corrupted when the maximum
error magnitude exceeds a certain factor of the median error magni-
tude for that frame; full details of this and performance metrics will

Fig. 2. Extract of typical restoration and ground truth (no keyclicks)
- male speech

be presented in future publications, but the method gave near 100%
correct detections in the examples tried so far.

We evaluate performance using an average segmental SNR mea-

sure, seg-SNR = 1
N

∑N
n=1 10 log10

∑T
t=1 v

2
t,n∑T

t=1(v
2
t,n−v̂t,n)2

, where vt,n
is the true, uncorrupted, voice signal at the tth sample of the nth
frame, and v̂ is the corresponding estimate of v. Performance is
compared against a very simple procedure which mutes the spectral
components to zero in frames which are detected as corrupted. Re-
sults show an improvement on average of approximately 3dB when
taken over the whole speech extract, and of 6-10dB when including
just the frames detected as corrupted. This figures may be adjusted
by tuning the prior parameters to trade off perceived signal distortion
against suppression levels of the noise. Although these figures may
seem relatively small improvements, the perceptual effect of the EM
approach is significantly improved compared with muting and with
the corrupted input audio.

An example detection and restoration is shown in Fig. 4. In
all three panels the frames detected as corrupted are indicated by
the zero-one waveform overlaid in green. These detections agree
well with a visual study of the keyclick data waveform. In the top
panel we have the corrupted input voice microphone, in the middle
panel the restored output, and at the bottom the original voice sig-
nal (available in this test as ‘ground-truth’). Notice that the central
panel manages to preserve the speech envelope and speech events
around 125 ksamples and 140 ksamples, while suppressing the dis-
turbance well around 105 ksamples. The audio is significantly im-
proved in the restoration, leaving just a little ‘click’ residue which
can be removed by post-processing using standard techniques [1],
Ch. 4, while the simple ‘muting’ restoration is far too extensive to
be acceptable. In this fairly typical example a favourable 10.1dB
improvement in segmental SNR is obtained for corrupted frames,
compared to the muting restoration, and 2.5dB improvement when
all frames are considered (including the uncorrupted frames). See
[11] for more detailed results and audio from these experiments.

5. CONCLUSION

We have presented new methods for enhancement of speech when
corrupted by keyboard typing noise and demonstrated good perfor-
mance on real data recorded from the Pixel Chromebook. How-
ever, further recent experiments have indicated that the modelling
of cross-talk from voice into the keybed mic, here considered as
negligible, is an area to pursue - hence future developments will
include cancellation of this cross-talk into the framework, a con-
strained source separation framework.
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