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ABSTRACT

This paper presents a single-channel high-dimensional Wiener
filter in the spectro-temporal modulation domain. Unlike
other conventional noise reduction techniques, the proposed
algorithm not only reduces noise but also enhances the “tex-
tures” of the speech signal. A non-iterative decision-directed
noise estimation method is adopted to estimate the modula-
tion SNR for the modulation-domain Wiener filter. The effi-
cacy of the proposed algorithm in enhancing speech intelligi-
bility is assessed using the short-time objective intelligibility
(STOI) measure. Statistical analysis results demonstrate that
our proposed algorithm can improve STOI scores in speech-
shape noise (SSN) and white noise conditions, but not in
babble noise condition, while the conventional Wiener filter
fails to improve STOI scores in all three noise conditions.

Index Terms— spectro-temporal modulation, Wiener fil-
ter, speech enhancement, speech intelligibility

1. INTRODUCTION

Speech is the most important biosignal for human communi-
cation. Nowadays, many speech-application related devices
have been developed to facilitate our daily lives. The applica-
tions can be grouped into two categories: for machine to lis-
ten and for human to listen. One of the important applications
for human listening is to help hearing-impaired (HI) patients.
Noise reduction is a critical element in hearing-aid devices,
which are supposedly developed to improve perceived speech
quality and intelligibility for HI patients. However, subjec-
tive listening tests showed that conventional single-channel
noise reduction algorithms do not improve speech intelligi-
bility either of English [1, 2] or of Chinese and Japanese [3].
Therefore, developing a better single-channel noise reduction
algorithm for hearing aids is still a challenge for researchers.

Speech contains rich information in both spectral and
temporal domains. The fluctuations of speech signal across
time and frequency axes are referred to as modulations. Psy-
choacoustic experiments show the slow temporal energy
modulations (≤ 16 Hz) of speech are highly related to speech
intelligibility [4]. Indeed, the temporal modulations reflect
changes of the vocal tract through time and encode lots
of linguistic information. Considering temporal modula-

tions has inspired many engineering approaches such as the
bi-frequency (acoustic and modulation frequencies) repre-
sentation for audio coding [5], the temporal-modulation in-
corporated front-end feature extraction for automatic speech
recognition (ASR) [6], and the temporal-modulation domain
estimator for speech enhancement [7].

In addition to psychoacoustic experiment results, neu-
rophysiological evidences also suggest that neurons of the
auditory cortex (A1) respond to both spectral and temporal
modulations of the input sounds. A computational audi-
tory model was proposed accordingly [8]. Later on, psy-
choacoustic experiments were also conducted to determine
which spectro-temporal modulations are critical for speech
comprehension [9]. Not surprisingly, the concept of using
spectro-temporal modulation analysis has shown in many ap-
plications, such as speech intelligibility assessment [10] and
robust feature extraction for ASR [11]. As for frequency mod-
ulation, a psychoacoustic study demonstrated that frequency
modulations significantly enhance human speech recognition
in noisy environment [12]. This study supports our idea that
the frequency modulation energy associated with harmonics
of speech can be used as a robust feature, especially effec-
tive against non-stationary noise, for voice activity detection
(VAD) [13].

In our previous work, we proposed a spectro-temporal
modulation subband Wiener filter for Fourier spectrograms
and demonstrated its capability in improving speech quality
[14]. However, for HI patients, enhancing speech intelligibil-
ity is just as important. Most of the conventional noise reduc-
tion methods tend to improve the signal-to-noise ratio (SNR)
of the speech signal. It has been shown that SNR improve-
ment is not totally correlated to intelligibility improvement
[15]. Since spectro-temporal modulations have been shown
critical for speech comprehension [12] and speech intelligi-
bility can be measured by assessing spectro-temporal modula-
tion contents [10], it is reasonable to assume spectro-temporal
modulations are highly related to speech intelligibility. There-
fore, we postulate that enhancing modulation SNR would im-
prove speech intelligibility. In this paper, we propose a direct
priori modulation SNR estimator for our previously devel-
oped modulation subband Wiener filter and show its capabil-
ity of improving speech intelligibility.

The rest of the paper is organized as follows. Section
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Fig. 1. ω-Ω (rate-scale) space.

2 gives a review of our spectro-temporal analysis and syn-
thesis framework and demonstrates modulation contents of
the speech signals. Then, a modulation Wiener filter is pro-
posed by incorporating a direct modulation SNR estimation
method. The performance on improving speech intelligibil-
ity is demonstrated in section 4. We end in section 5 with
conclusion and future work.

2. MULTIRESOLUTION SPECTRO-TEMPORAL
ANALYSIS AND SYNTHESIS FRAMEWORK

2.1. Spectrotemporal analysis and synthesis

Since speech can be assumed quasi-stationary, it is analysed
using short-term Fourier transform (STFT).

X(n, k) =

∞∑
l=−∞

x(l)w(n− l)e−j2πkl/N (1)

wherew(n) is an analysis window function and k refers to the
frequency index.

For any input magnitude spectrogram | X(n, k) |, the 4-
dimensional multi-resolution representation can be obtained
as follows:

C±(n, k, ω,Ω) =| X(n, k) | ∗nkSTIR±(n, k;ω,Ω) (2)

where STIR±(n, k;ω,Ω) is the spectro-temporal impulse
response of the 2D modulation filter tuned to ω and Ω; ∗nk
denotes two-dimensional convolution along the time and fre-
quency axes. The rate parameter ω (in Hz, as frequency)
reflects how fast the local envelope of the magnitude spectro-
gram varies along the time axis. The scale parameter Ω (in
ms, as quefrency) reflects how broad the local envelope of the
magnitude spectrogram distributed along the frequency axis.
They are defined as the Fourier domains of the time and the
frequency dimensions, respectively.

To reduce the computational costs of the 2D convolution,
eq. (2) is reformulated as:

C±(n, k, ω,Ω) = F−1
2D{F2D{| X(n, k) |} · STMF±(ω,Ω)}

(3)
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Fig. 2. Spectro-temporal analysis and synthesis process. (a)
Time waveform; (b) its spectrogram; (c) the 4-D (scale-rate-
frequency-time) output; (d) reconstructed spectrogram; (e) re-
constructed waveform.

whereF2D andF−1
2D denote the 2-D Fourier transform and the

inverse 2-D Fourier transform; and STMF±(ω,Ω) denotes
the spectro-temporal frequency responses of the 2D modu-
lation filters. Detailed in designing these modulation filters
can be accessed in [14]. In addition, the sign (±) represents
the sweeping direction of the filters (positive rate refers to the
downward direction and negative rate refers to the upward
direction). As shown in Fig. 1, the frequency response of a
complex downward/upward filter is located in the first/second
quadrant of the ω-Ω space.

Eq. (3) shows that the spectro-temporal analysis is a pure
linear operation such that the reconstructed magnitude spec-
trum | X ′(n, k) | can be obtained from the four-dimensional
representation C±(n, k, ω,Ω) by

| X ′(n, k) |= R{F−1
2D{

∑
ω,Ω F2D{C±(n, k;ω,Ω)}∑

ω,Ω STMF±(ω,Ω)
}} (4)

where R{·} denotes the real-part operator. Finally, the
speech sound is synthesized using the overlap-and-add (OLA)
method [16]. Note, the original modulation phase and acous-
tic phase are applied in inverse operations. Fig. 2 shows the
spectro-temporal analysis and synthesis process for a sample
utterance and results at different stages.
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Fig. 3. (a) Clean and noisy spectrograms; (b) spectro-
temporal modulation contents of the same T-F unit.

2.2. Rate-Scale representation

The multi-resolution analysis process can capture the promi-
nent spectro-temporal “texture” of speech, such as pitch, har-
monicity, formant, amplitude modulation (AM), frequency
modulation (FM) and onset/offset. Fig. 3(a) shows the
Fourier spectrograms of a clean and two noisy utterances,
which are corrupted by speech-shape noise (SSN) and babble
noise at 0 dB SNR, respectively. Fig. 3(b) demonstrates
the corresponding modulation contents | C(ω,Ω;n, k) | of a
particular time-frequency (T-F) unit. The peak in the R-S plot
indicates that the harmonics is moving upward with 8∼16
Hz temporal modulation and 8∼10 ms spectral modulation
(100∼125 Hz harmonic spacing) around the particular T-F
unit. In the noisy conditions, the R-S plots are damaged,
especially in the babble noise. The textures of speech (AM,
FM, etc.) are destroyed such that it becomes less intelligible.
Therefore, we want to find a Wiener-gain function which can
suppress noise and enhance the underlying textures of speech.

3. PROPOSED SPEECH ENHANCEMENT
ALGORITHM

For common speech enhancement algorithm, the observed
noisy speech signal y(n) is formulated as:

y(n) = x(n) + n(n) (5)

where x(n) is the clean speech signal and n(n) is the noise.
It is easy to derive the Wiener filter in the frequency domain
as:

H(k) =
ξ(k)

ξ(k) + 1
(6)

where ξ(k) denotes the a priori SNR at frequency k. The filter
preserves the spectrum at high SNR (ξ(k)→∞, H(k)→ 1)
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Fig. 4. Block diagram of the proposed modulation Wiener
filter to enhance speech intelligibility.

and attenuates the spectrum at low SNR (ξ(k)→ 0, H(k)→
0). A simple and efficient approach was proposed to directly
estimate the a priori SNR ξ(k) using a recursive update rule
to combine the past and present estimates [17].

Now, we extend the method into the modulation domain
to estimate the a priori modulation SNR as follows:

ξ̂(n, k, ω,Ω) = a · | ĈX(n− 1, k, ω,Ω) |2

| CN (n− 1, k, ω,Ω) |2
+

(1− a) ·max(
| CY (n− 1, k, ω,Ω) |2

| CN (n− 1, k, ω,Ω) |2
− 1, 0)

(7)
where a is a smoothing constant; ĈX(n− 1, k, ω,Ω) denotes
the enhanced modulation spectrum at time frame n − 1 and
frequency bin k; CY (n− 1, k, ω,Ω) and CN (n− 1, k, ω,Ω)
denote the noisy and noise modulation spectra, respectively.
Then the general form of the parametric Wiener gain in the
modulation domain is defined as :

g(n, k, ω,Ω) = (
ξ̂(n, k, ω,Ω)

ξ̂(n, k, ω,Ω) + α
)β (8)

where α and β are attenuation parameters. By varying the
parameters, we can obtain different Wiener filters with dif-
ferent attenuation gains, which control the trade-off between
speech distortion and noise reduction of the Wiener filters.
Basically, the conventional Wiener gain g(n, k) in the fre-
quency domain only modifies a particular T-F unit, while the
gain g(ω,Ω;n, k) in the modulation domain modifies “local”
modulations of that T-F unit to enhance underlying “textures”
around that unit. Note that the degrees of the “local” are char-
acterized by different widths of the impulse responses of dif-
ferent 2D modulation filters parameterized by (ω,Ω). Our
proposed modulation Wiener filter to enhance speech intelli-
gibility is summarized in Fig. 4.

4. EVALUATION AND RESULTS

For evaluations, we used the wideband clean samples from
NOISEUS corpus [15], which contains thirty phonetically-
balanced sentences spoken by three male and three female
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Table 1. Mean and standard deviation of STOI scores for
each enhancement method and noise type in the 0 dB SNR
condition.

SSN babble white
noisy 0.70 (0.05) 0.64 (0.05) 0.74 (0.05)

Wiener 0.72 (0.05) 0.63 (0.06) 0.76 (0.05)
Proposed 0.77 (0.04) 0.66 (0.05) 0.80 (0.05)

IdBM 0.86 (0.02) 0.85 (0.04) 0.86 (0.03)

speakers (five sentences per speaker). The clean speech sig-
nals were first downsampled to 16 kHz sampling frequency
and three types of noise (speech-shaped noise (SSN), cafete-
ria babble, and white noise) were added to corrupt the clean
signals with 0 dB SNR. The SSN and cafeteria babble noise
were extracted from the Noise Recordings [15] and white
noise was extracted from NOISEX-92 [18]. To determine
the α and β parameters of the proposed modulation Wiener
filter, we conducted pilot experiments under the SSN condi-
tion to calculate the average STOI score and found α = 8
and β = 0.5 gives the best score. The STOI calculates the
short-time temporal envelope correlation between clean and
degraded speech signals and has been shown highly corre-
lated with subjective intelligibility scores [19]. The STOI
ranges from 0 to 1, and a higher value means more intelli-
gible. For a fair comparison with the conventional Wiener
filter, its parameters were also optimally selected as α = 1
and β = 0.5, which give the highest STOI score in each noise
condition. The noise estimation for the conventional Wiener
filter was done using the non-iterative decision-directed noise
estimation method as well [17].

The enhanced speech signal using ideal binary mask
(IdBM) was also generated as an upper bound on the STOI
measure. The IdBM is derived with a priori knowledge
of energies of the target and interference sounds. Specifi-
cally, the mask retains/removes the T-F unit when its SNR
is greater/smaller than a predefined local criterion (LC). The
IdBM has been shown carrying critical speech intelligibility
information not only for normal-hearing (NH) listeners but
also for HI patients [20, 21]. In this work, the LC was set to
-5 dB. The mean and standard deviation of the STOI scores
are shown in Table 1 for each enhancement method and each
noise type. The standard deviations are listed in parentheses.

One-way analysis of variance (ANOVA) tests were car-
ried out to compare STOI scores of our proposed algorithm
and of the conventional Wiener filter with STOI scores of
original noisy signals in each noisy condition. Test statistics
are shown in Table 2. From these results, one can observe
our proposed algorithm demonstrates significant effects in im-
proving STOI scores in SSN [F (1, 58) = 19.236, p < 0.001]
and white [F (1, 58) = 17.435, p < 0.001] noisy conditions,
but not in the babble noise condition [F (1, 58) = 0.345,
p = 0.559]. The reason is that the babble noise consists of

Table 2. Results of one-way ANOVA between enhanced
speech (from proposed modulation Wiener filter and conven-
tional Wiener filter) and noisy speech.

Wiener Proposed
SSN F (1, 58) = 2.290, F (1, 58) = 19.236,

p = 0.136 p < 0.001
babble F (1, 58) = 1.031, F (1, 58) = 0.345,

p = 0.314 p = 0.559
white F (1, 58) = 1.974, F (1, 58) = 17.435,

p = 0.165 p < 0.001

similar spectro-temporal modulations as speech such that our
proposed method has intrinsic difficulty in reducing the bab-
ble noise in the modulation domain. In contrast, the con-
ventional Wiener filter fails to improve STOI scores in all
noisy conditions. It is consistent to the conclusion from the
subjective test results reported in [1, 2, 3] that conventional
Wiener filter does not improve speech intelligibility. Note,
many supervised learning algorithms were proposed recently
for enhancing speech intelligibility by demonstrating their ca-
pability in producing higher STOI scores [22]. Our proposed
method is an unsupervised algorithm, which might be more
attainable for small hearing assistive devices.

5. CONCLUSION AND FUTURE WORK

In this paper, we propose a single-channel speech enhance-
ment algorithm, which suppresses noise and enhances the tex-
tures of the speech in the modulation domain. The objective
STOI scores demonstrate that our proposed algorithm can im-
prove speech intelligibility under SSN and white noise condi-
tions.

In this work, we only use a direct rule to estimate a priori
modulation SNR. More generalized or iterative noise estima-
tion mechanisms [15] could be tested in the future. In ad-
dition, different time and frequency sensitivities of different
modulation filters should be considered in the noise estima-
tion module. For instance, the weighted combination rule
of the past and present estimates of ξ(n, k, ω,Ω) could be
dropped in low rate filters but set highly sensitive in high rate
filters. In addition to refining the noise estimation module,
we will conduct psychoacoustic experiments for HI patients
in the near future to evaluate the efficacy of the proposed al-
gorithm in improving Mandarin speech intelligibility for pa-
tients.
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