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ABSTRACT

Multichannel noise reduction techniques are commonly used in
speech communication applications. In these applications, it is often
desired to maintain a residual amount of background noise to avoid
perceptually unpleasant artifacts, such as musical tones or time pe-
riods of complete silence. Noise reduction can be achieved by the
parametric multichannel Wiener filter (PMWF), which provides a
trade-off between speech distortion and noise reduction. To addi-
tionally control the maximum noise reduction, the PMWF can be
decomposed into a spatial filter and a spectral gain, which is lim-
ited to a desired minimum value. Such decomposition is however
only possible if the desired source power spectral density matrix is
rank-one, which in general does not even hold for a single source in
reverberant environments. In the proposed approach, we define the
desired signal as a sum of the speech signal plus the desired residual
noise, and derive an optimum filter in the minimum mean-square
error sense. The resulting filter has the advantage that it enables
direct control of the maximum noise reduction without the need for
a gain limiting step and is furthermore applicable to desired signals
of higher rank. We analyze the derived filter thoroughly and show
its relation to the standard PMWF that results as a special case.
Furthermore, we propose a solution for keeping the residual noise
level constant in slowly time-varying noise fields.

Index Terms— array processing, multichannel Wiener filter,
noise suppression, residual noise control

1. INTRODUCTION

The reduction of acoustic interference such as sensor noise, ambi-
ent noise and other undesired sounds has been a field of extensive
research for decades. Typical applications range from hands-free
communication, source separation to speech recognition systems.
Multiple microphones help to gather spatial information about the
sound field which can be exploited by spatially selective filtering. A
widely used approach to reduce noise and interfering sounds is the
multichannel Wiener filter (MWF), which requires the knowledge
of the power spectral density (PSD) matrices of desired and unde-
sired sound components. In the following, the latter is referred to as
noise. Since neither the signals nor their second-order statistics are
unobservable separately in mixed sound fields, the latter need to be
estimated. As a consequence, the filtered signal may contain residual
noise and additional artifacts.

Single-channel speech enhancement algorithms often suffer
from artifacts known as musical tones, which are caused by PSD
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estimation errors. There exist many approaches that aim to mitigate
these artifacts, e. g. [1]. A simple yet effective and widely used
technique is to limit the spectral filter gain to a minimum value
greater than zero, which leaves residual noise in the filtered signal
that can mask the musical tones and thereby leads to perceptually
more pleasing results. However, limiting the spectral filtering gain
is generally only possible for single-channel algorithms that use a
spectral gain and to some extent for multichannel filters that can
be decomposed into a spatial filter and a spectral gain [2]. Note
that this decomposition requires that the desired source PSD matrix
is rank-one, which is not always true even if only a single desired
source is active. For instance, the desired source PSD matrix is
of higher rank when the analysis time frames are shorter than the
reverberation time of the acoustic environment [3, 4].

There exist some approaches for a time-domain Wiener filter
introducing a parameter to control the residual noise [5, 6]. In the
class of single-channel spectral enhancement methods, [7] proposes
a method to control the amount of residual noise, and in [8] a similar
method is proposed for two interfering sound components in the con-
text of joint noise reduction and echo cancelation. A multichannel
method for partial noise reduction for hearing aids is proposed in [9].
Additional control over the trade-off between speech distortion and
noise reduction is provided by the parametric multichannel Wiener
filter (PMWF) [10]. In typical applications of the PMWF, the trade-
off parameter is set to a fixed empirically determined value [11, 12]
or is heuristically controlled [13]. Existing solutions, however, sel-
dom focus on directly controlling the amount of residual noise.

In this paper, a multichannel filter is proposed which provides di-
rect control of the amount of residual noise. An optimum PMWF is
derived by defining the desired output signal as a sum of the source
signal and the desired residual noise level. The derived filter can
be seen as a generalized PMWF which does not require the source
rank-one assumption to set the lower bound on noise reduction. The
newly formulated filter is analyzed analytically and through simula-
tions, and its key advantages over the standard PMWF are discussed.
Finally, two approaches to choose the control parameter of the resid-
ual noise are proposed: (i) for a constant noise reduction and (ii) for
a constant noise level at the filter output. The latter approach can be
used to shape the residual noise to a desired spectral shape.

2. PROBLEM FORMULATION

Let us consider an array that consists of M microphones capturing
the sound field. Using the notation in the short-time Fourier trans-
form (STFT) domain, the signals Ym(k, n) with m = {1, . . . ,M}
are observed at the microphones, where k and n are the frequency
and time indices, respectively. The signals are stacked into the vector
y(k, n) = [Y1(k, n), . . . , YM (k, n)]T . We assume that the sound
field is described by

y(k, n) = x(k, n) + v(k, n), (1)
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where x(k, n) contains the desired speech signal at each micro-
phone Xm(k, n) and v(k, n) contains the undesired noise signals
Vm(k, n). We assume both sound components to be uncorrelated
such that the PSD matrix of the microphone signals Φy(k, n) =
E{y(k, n)yH(k, n)} can be written as

Φy(k, n) = Φx(k, n) + Φv(k, n), (2)

where the PSD matrix of the desired sound Φx(k, n) and the noise
PSD matrix Φv(k, n) are defined similarly.

Generally in speech enhancement, the objective is to extract the
desired speech component at a reference microphone, in this case
X1(k, n), and to suppress the noise components v(k, n). Typical
filters designed for this task may introduce artifacts such as distortion
and musical tones, and in practice some residual noise still remains
at the filter output. These artifacts can be controlled and mitigated
if we are able to control the amount and the spectral shape of the
residual noise. The controlled residual noise can mask musical tones
and a lower bound on noise suppression results in a lower speech
distortion. In the following, we define the target signal as the sum of
speech and reduced (i. e. desired residual) noise as

Z(k, n) = eT
1 x(k, n) + c(k) eT

1 v(k, n), (3)

where the parameter 0 ≤ c(k) ≤ 1 controls the noise reduction and
e1 = [1, 0, . . . , 0]T . We aim to obtain an estimate Ẑ(k, n) of the
target signal given in (3) using a spatial filter h(k, n) as

Ẑ(k, n) = hH(k, n)y(k, n). (4)

Hereafter, the time and frequency indices are omitted for brevity
when possible.

3. PARAMETRIC MULTICHANNEL WIENER FILTER
WITH RESIDUAL NOISE CONTROL

In this section, a generalized PMWF is derived that provides direct
control of the maximum noise reduction. The filter is analyzed, re-
lated to the well-known standard PMWF and two methods to choose
the residual noise control parameter are discussed.

3.1. Derivation of the proposed filter

To obtain a filter formulated in a flexible way, we employ the PMWF
to our problem with the newly defined target signal. The PMWF
can be derived in two ways: either by minimizing the residual noise
with a constraint on the speech distortion [12] or by minimizing the
speech distortion with a constraint on the residual noise [11]. If the
target signal is defined as the desired speech signal only, both ap-
proaches result in an identical filter. Since in our problem formula-
tion the target signal given by (3) contains components of the desired
signal as well as of the residual noise, only the latter formulation
leads to a useful result. To obtain an estimate of the target signal
Z(k, n), we minimize the speech distortion with the constraint that
the error between the desired residual noise and the filtered noise is
smaller than the threshold σ as

hZ(k, n) = argmin
h

E

{∣∣∣eT
1 x− hHx

∣∣∣2} (5a)

subject to E

{∣∣∣cT
1 v − hHv

∣∣∣2} ≤ σ, (5b)

where c1 = c e1. The solution using the Lagrangian multiplier µ
yields the proposed PMWF given by

hZ(k, n) = (Φx + µΦv)
−1 (Φxe1 + µΦvc1) . (6)
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Fig. 1. Noise reduction factor for a standard PMWF depending on µ
and the input SNR. Results obtained for M = 4, inter-microphone
spacing of 3 cm and angular frequency of ω = π/5.

3.2. Properties and relation to existing filters

The filter given by (6) can be decomposed into a weighted sum of
two Wiener filters: one that extracts the desired signal and one that
extracts the noise. By defining the modified input PSD matrix as
Φ̃y = Φx + µΦv , we can rewrite (6) as

hZ = Φ̃−1
y Φxe1︸ ︷︷ ︸

hX

+ c Φ̃−1
y µΦve1︸ ︷︷ ︸

hV

(7a)

= hX + c Φ̃−1
y (Φ̃y −Φx) e1 (7b)

= hX + c (e1 − hX) (7c)
= (1− c)hX + c e1. (7d)

From (7c) we can see that the noise extraction filter hV (k, n) is
complementary to hX(k, n). Furthermore, from (7d) it is clear that
by introducing the residual noise control parameter c, the obtained
filter can be seen as a weighted sum of a standard PMWF and the
reference microphone. It follows that by using the form of (7c), an
arbitrary filter that aims to extract any desired signal can be designed
to control the residual noise using an analoguous complementary
filter.

For c = 0, we obtain the well-known standard PMWF, where
the target signal is the desired speech only. By choosing 0 ≤ c ≤ 1,
the maximum noise reduction of the filter can be additionally con-
trolled. The Lagrangian multiplier µ adjusts the input noise [14],
i. e., it enables the control over the level of over- or underestimation.
For µ = 1, a MWF with residual noise control is obtained that is
similar to the filter derived in [9] in the context of hearing aids.

3.3. Controlling the residual noise with the standard PMWF

In this section, we consider the standard PMWF, i. e. (6) with c =
0. The solution to the problem given by (5) (with c = 0) can be
found by setting (5b) to an equality and computing the Lagrangian
multiplier such that the residual noise can be kept smaller or equal
than σ. A closed form solution can be obtained only by assuming
that the desired signal PSD matrix Φx(k, n) is rank-one and can be
found e. g. in [15]. For the single-channel case, a similar solution
was found in [14]. In both publications, the parameter µ depends
on the input signal-to-noise ratio (SNR), which causes the filter to
change drastically. Also in [12,16] it was found that the upper bound
on µ(k, n) has to be linearly dependent on the SNR to ensure that
the speech distortion is bounded below a given threshold.

In [13], it was proposed to choose the parameter µ from a dif-
ferent perspective, i. e., by computing the residual noise power for a
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given µ. Following this approach, Fig. 1 shows the resulting noise
reduction factor ζNR (see (12)) for a given µ assuming spatially white
noise. The contour lines of equal noise reduction values are drawn
in black. We can observe that the parameter µ has to be linearly de-
pendent on the SNR to ensure a constant noise reduction level. To
limit the noise reduction, µ should be linearly dependent on the SNR
for low SNRs and constant over the SNR above the limit. This is ex-
emplary shown as red line in Fig. 1 for a maximum noise reduction
of 20 dB and µ = 1 for higher SNRs. Hence, the constraint (5b) is
not sufficient to fully control the residual noise level when σ is set to
a constant value. Moreover, since there exists no closed form solu-
tion to compute a Lagrangian multiplier µ with the desired behavior
for arbitrary ranks of the desired signal PSD matrix Φx, adaptive or
iterative methods would be required to compute µ for a desired σ.

3.4. Selection of the residual noise control parameter

In contrast to the standard PMWF discussed in Sec. 3.3, the pro-
posed filter allows for a flexible control of the residual noise power
and its spectral shape using the parameter c. In the following, we
focus on two control mechanisms that ensure that (i) constant noise
reduction or (ii) a constant output noise level is attained.

The first option is to use a fixed value for c, which yields a filter
with maximum noise reduction limited to c. The parameter c can
also be chosen frequency dependent to control the amount of noise
reduction for specific frequency regions and to shape the residual
noise spectrally. For some frequency regions a higher suppression
might be desired to obtain more clarity, whereas for other frequency
regions a lower suppression can be used to mitigate artifacts.

The second option is to scale c depending on the input noise
power at the reference microphone, i. e. as

c(k, n) = min

[√
φ0(k)

µ eT
1 Φv(k, n)e1

, 1

]
, (8)

where φ0(k) is the desired output noise power for low SNRs. In
(8), the control parameter is limited to avoid amplification of noise
at time-frequency regions where the noise is already below the de-
sired output noise power. Using this approach, we obtain a constant
output noise power at low SNRs even when the noise power changes
over time. This behavior can be desired e. g. if the long-term noise
power is slowly time-varying or if noise reduction of the spatial fil-
ter changes due to a moving desired source. Note that the noise
power can be kept constant in time-varying noise fields, if we are
able to track changes of the noise PSD, which is usually possible
for slowly time-varying noise. Furthermore, by choosing φ0(k) to
be frequency dependent, we can also adjust the spectral shape of the
residual noise.

4. THEORETICAL PERFORMANCE ANALYSIS

In this section, we analyze the proposed filter and the PMWF under
the rank-one assumption for Φx(k, n) as typically done in the anal-
ysis of MWFs. This assumption means that the desired signal PSD
matrix can be written as Φx(k, n) = φX(k, n)a(k, n)aH(k, n),
where φX(k, n) = E{X1(k, n)X

∗
1 (k, n)} and the vector a(k, n)

contains the source relative transfer functions (RTFs) from the refer-
ence microphone to all microphones.

Let the speech distortion index be defined as

νsd(h) =
E
{
|X1 − hHx|2

}
φX

. (9)
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Fig. 2. Noise reduction of the proposed PMWF with residual noise
control depending on the input SNR. The values of c are in dB.

Under the rank-one assumption, the filter hX(k, n) can be written
using the Woodbury matrix identity in the well-known form as [17]

hX =
Φv
−1aφX

µ+ φXaHΦ−1
v a

. (10)

Thus the speech distortion index of the proposed filter under rank-
one assumption can be obtained using (7d) and (10), and is given
by

νsd(hZ) = (1− c)2 ·
∣∣∣∣ µ

µ+ φXaHΦ−1
v a

∣∣∣∣2 . (11)

From (11) we can deduce that the parameter c limits the speech dis-
tortion to a maximum value. Compared to the typically used stan-
dard PMWF that is equivalent to the proposed filter for c = 0, the
speech distortion decreases for c > 0. Note that the Lagrangian
multiplier µ also has an influence on the speech distortion. For an
increasing µ, the speech distortion increases.

The noise reduction factor is defined as [17]

ζnr(h) =
eT
1 Φve1

hHΦvh
(12)

and is given for the proposed filter under rank-one assumption by

ζnr(hZ) =
(µ+ λ)2

(1−c)2η1λ+ η12(1−c)c(µ+λ) + c2(µ+λ)2
, (13)

where η1(k, n) = φX φ−1
V is the input SNR at the first microphone

and λ = φXaHΦ−1
v a is the multichannel a priori SNR. For c = 0,

we obtain the same form as derived in [12]. In the single-channel
case, due to η1 = λ, (13) reduces to

ζnr(hZ) =
(µ+ λ)2

(µ+ c λ)2
, M = 1. (14)

Since the complicated form of (13) provides no direct insight
into the behavior of the noise reduction factor, we computed the
noise reduction factor of the proposed filter (6) for different param-
eters as a function of the SNR in Fig. 2. The noise reduction factor
is computed for a single frequency and for a given input SNR at the
first microphone assuming spatially white noise with equal PSD at
all sensors. We can observe that for low SNRs, the proposed filter
approaches asymptotically its maximum noise reduction given by c,
which is the desired behaviour. The parameter c changes the max-
imum noise reduction at low SNRs, whereas the parameter µ shifts
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the curve left or right along the input SNR axis. This can be seen as
over- or underestimation of the noise. Note that for c = 0 (black and
grey lines), the noise reduction is equal to that of a standard PMWF,
for which a constant lower noise bound cannot be achieved for any
constant value of µ.

5. EXPERIMENTAL EVALUATION

5.1. Simulation setup and estimation techniques

We carried out two experiments as a proof of concept for the pro-
posed approach. In both experiments, we used a sampling rate of
16 kHz, an FFT length of 512 points, a square-root Hann window
with 32 ms length, and a hop-size of 16 ms. The desired signal was
a speech signal convolved with a simulated impulse response using
the image source method. We simulated a uniform linear array with
M = 4 microphones and 5 cm inter-microphone spacing in a room
with T60=200 ms and size of 5×4×6 m, and the source was located
in the broadside direction of the array at a distance of 2 m. The de-
sired speech signal was a concatenation of three speech signals taken
from the EBU-SQAM database [18], with a total length of 60 s.

The noise PSD was estimated online using the multichannel
speech presence probability based approach proposed in [19]. The
desired signal PSD was estimated by subtracting the PSD matrices
as Φ̂x = Φy − Φ̂v , where we ensured that the estimated matrix
is positive semi-definite. The matrix Φy(k, n) was obtained by
recursive averaging with a time constant of 30 ms.

5.2. Evaluation by objective measures

In this experiment, the effect of the controlled residual noise together
with the overestimation factor is evaluated using objective measures.
The tests were conducted for different noise signals, i. e. speech-
spectrum shaped diffuse noise generated with the method proposed
in [20], cafeteria babble noise, and train station noise from the DE-
MAND database [21]. The noise was added with varying SNRs be-
tween [−10, 30] dB. The results averaged over all tested SNR and
noise conditions are presented in Fig. 3.

From all results it can be observed that by controlling the
residual noise level, the quality in terms of the speech distortion
index (SDI) and the signal-to-artifact ratio (SAR) [22] increases.
This is traded against a slightly lower improvement in the speech-
intelligibility weighted segmental SNR (SNRSI) [23]. Thus, by
choosing the residual noise control parameter c > 0, artifacts
caused by estimation errors can be clearly reduced. Decreasing the
parameter µ also helps mitigating the speech distortion and musical
tones, but results in a much lower SNR improvement.

5.3. Controlling the output noise power

Given that the noise PSD can be estimated sufficiently fast, the pa-
rameter c adjusting the residual noise level can be chosen such that
the residual noise at the output is kept constant with (8). A suf-
ficiently fast tracking of slowly time-varying noise is possible e. g.
using speech presence probability based approaches [19, 24].

In this experiment, v(k, n) is white Gaussian noise with a
slowly time-varying power. The broadband noise power of the noise
at the first microphone is shown in black in Fig. 4 and the estimated
average noise PSD is marked as dashed grey. We can observe a
slight overestimation in active speech periods and a slightly delayed
tracking during noise power changes. The filtered output noise
power is averaged only over time-frequency bins where noise is
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Fig. 3. Objective measures for the proposed filter.
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dominating, i. e. where the input SNR is below −10 dB. All filters
are computed with µ = 1. The blue line shows the noise output
power where the residual noise is uncontrolled, as in a standard
MWF (c = 0 and µ = 1). If the noise reduction parameter is chosen
constant as c = −10 dB (green line), we can see that the green line
follows the input noise (black line) at a 10 dB lower level. Thus as
desired, a constant noise reduction is achieved. The red line depicts
the noise power controlled by c depending on the estimated input
noise power (8), where the absolute desired residual noise power is
set to φ0(k) = −40 dB. As expected, the output noise power stays
constant at the desired level, independently of the time-varying input
noise power. The fluctuations of the green and red curves are caused
by noise PSD estimation errors.

6. CONCLUSION AND OUTLOOK

In this paper, a method to control the residual noise at the output of
a parametric multichannel Wiener filter was proposed. It was shown
that limiting the amount of noise reduction using the proposed fil-
tering can significantly reduce speech distortion and noise reduction
artifacts, while the signal-to-noise ratio decreases only slightly. In
addition, a method to maintain a constant noise level at the filter out-
put in slowly time-varying noise fields was presented, in which the
parameter for the residual noise level is computed adaptively. The
proposed method can be extended to control the residual level of
multiple interferers individually.
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