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ABSTRACT 

 

In spatial audio analysis-synthesis, one of the key issues is to 

decompose a signal into primary and ambient components 

based on their spatial features. Principal component analysis 

(PCA) has been widely employed in primary component 

extraction, and shifted PCA (SPCA) is employed to enhance 

the primary extraction for input signals involving the inter-

channel time difference. However, SPCA generally requires 

the primary components to come from one direction and 

cannot produce good results in the case of multiple 

directions. To solve this problem, we propose multi-shift 

PCA (MSPCA) by extending SPCA to multiple shifts. Two 

structures of MSPCA with different weighting methods are 

discussed. From the results of our simulations and listening 

tests, the proposed consecutive MSPCA with proper 

weighting is found to be superior to the conventional PCA 

and SPCA based primary extraction methods. 

  

Index Terms—principal component analysis (PCA), 

primary-ambient extraction (PAE), spatial audio, multiple 

sources, time shifting 

 

1. INTRODUCTION 

Increasing prevalence of 3D video technology calls for a 

more immersive listening experience to better match 3D 

visual effects, resulting in a growing need for 3D audio or 

spatial audio reproduction. Primary component that is 

directional and ambient component that is diffuse are two 

critical elements in spatial audio processing. Different 

processing schemes should be independently applied to the 

primary and ambient components to enhance the perception 

of spatial audio [1]. However, the primary and ambient 

components are not stored separately in conventional audio 

formats including stereo and 5.1, which necessitates 

primary-ambient extraction (PAE). In recent years, PAE has 

been widely applied in spatial audio processing [2], [3], 

audio mixing [4]-[6], spatial audio coding [7], [8], 

immersive 3D sound system [9]-[11], and natural sound 

rendering headphone systems [12]. 

To date, many approaches have been proposed for PAE, 

including time-frequency masking [13], least-squares [14], 

mixing model classification [15], estimation using multi-

channel pair wise correlations [16], ambient phase 

estimation [17], and principal component analysis (PCA) 

[1], [18]-[22]. PCA remains one of the most widely studied 

methods in PAE. Applied in stereo signals, PCA transforms 

the signal space into two orthogonal basis vectors using the 

Karhunen-Loève transform [23]. As the primary component 

is usually stronger than the ambient component, the vector 

corresponds to the larger eigenvalue is used as a projection 

basis for the primary components. 

When the primary component is not completely 

correlated at zero lag, the performance of PAE is severely 

degraded. The performance degradation includes inaccurate 

estimation of inter-channel time difference (ICTD) and inter-

channel level difference (ICLD) of the primary components, 

which results in erroneous sound localization. To solve this 

problem, shifted PCA (SPCA) is introduced [21] to shift the 

input signal according to the estimated ICTD prior to PCA. 

However, one single shift only accounts for one direction, 

which is improper for the primary components that consist 

of sound sources from multiple directions. Thus, a common 

approach is to decompose the signal into subband before the 

extraction, assuming that only one source is dominant in 

each subband [14], [24]. On this note, the directions of 

multiple sources can be tracked [25] and localized [26] in 

the presence of ambient noise. Nevertheless, subband PAE 

approaches become problematic when the spectra of the 

sources in the primary components overlap in certain 

subbands. Meanwhile, timbre change is an inevitable 

problem in subband PAE. 

In this paper, we investigate the primary component 

extraction (or primary extraction for short) with multiple 

directions by extending the single shift SPCA to multiple 

shifts. These shifts are performed based on the ICTD 

estimation. While in the output, the extracted primary 

components are correspondingly shifted back, weighted and 

summed to obtain the final result of the extracted primary 

components. We refer to the proposed method as multi-shift 

PCA (MSPCA) in this paper. The typical structure of 

MSPCA is shown in Fig. 1. 

The rest of the paper is organized as follows. In Section 

2, we review the stereo signal model, and PCA, SPCA based 
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primary extraction methods. Section 3 discusses the 

proposed MSPCA based primary extraction. Section 4 

presents a series of performance comparisons, including 

simulation results and subjective listening tests. Finally, we 

conclude this work in Section 5. 

 

2. PCA AND SPCA BASED PRIMARY EXTRACTION 

In this section, we introduce the stereo signal model and 

explain its key assumptions. Based on this model, PCA and 

SPCA are employed in primary extraction. 

 

2.1. Stereo Signal Model 

In general, we consider a stereo signal to consist of two 

components: (i) a directional component referred to as the 

primary component; and (ii) a diffused component referred 

to as the ambient component [1]. Denoting one frame of the 

time-domain stereo signals as 0 1, ,x x we formulate the basic 

signal model as: 

 0 0 0 1 1 1,  ,   x p a x p a  (1) 

where 0 1,  p p  and 0 1,  a a  are the primary and ambient 

components in the two channels of the stereo signal, 

respectively. 

The statistical characterization for the primary and 

ambient components in this model is that the primary 

components are assumed to be correlated while the ambient 

components are uncorrelated. The unit correlation of the 

primary components is usually realized by amplitude 

panning between two channels, i.e., 1 0 ,kp p where k is the 

primary panning factor [1]. Higher values of k indicate that 

the primary component is panned more towards channel 1. 

Furthermore, the primary and ambient components are 

assumed to be uncorrelated with each other. The diffuseness 

of the ambient component leads to a balance of ambient 

power between the two channels. To determine the power 

difference between the primary and ambient components, we 

introduce the primary power ratio, which is the percentage 

of the primary component power in the input signal. 

 

2.2. Primary Extraction using PCA and SPCA 

Based on the signal model, primary extraction using PCA 

can be obtained by eigenvalue decomposition of the input 

covariance matrix. The results of extracted primary 

components using PCA can be obtained as [22] 
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x x x x
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However, it is unlikely for any stereo input signals to 

satisfy all the assumptions of the stereo signal model. As 

discussed in [27], correlated signals can be amplitude 

panned as well as time shifted. To overcome the limitation 

of PCA and improve the extraction of time shifted primary 

components, SPCA is proposed [21]. In SPCA, the stereo 

input signals are first time-shifted according to the estimated 

ICTD of the primary component before PCA. Subsequently, 

the extracted primary components are shifted back using the 

same ICTD. The critical step of SPCA is to estimate the 

correct ICTD for the shifting. There has been extensive 

research on ICTD estimation (see [28]-[30] and references 

therein). Based on Jeffress coincidence model [28], the 

inter-channel cross-correlation coefficient (ICC) of different 

time lags is calculated and the lag number that corresponds 

to the maximum of ICC is the estimated ICTD of the 

primary components in the stereo signal. 

 

3. MSPCA BASED PRIMARY EXTRACTION 

In many applications of spatial audio, concurrent sound 

sources from different directions and even the reflections of 

these sound sources (image sources) are frequently 

encountered in the stereo mix. These directions of the 

sources and reflections imply multiple different ICTDs. In 

such cases, SPCA with one single shift that corresponds to 

one single direction becomes problematic. Therefore, to 

account for multiple directions in the primary components of 

the stereo signal, we extend SPCA from one single shift to 

multiple shifts, and develop MSPCA for primary extraction. 

The typical structure of the MSPCA (MSPCA-T) is shown 

in Fig. 1. First, several ICTDs are estimated from the stereo 

input signal by finding the peaks in the short time cross 

correlation function [31]. Next, the input signal is time 

shifted according to the estimated ICTDs [21]. For every 

shifted version, PCA is applied to obtain the extracted 

primary components. Finally, the extracted primary 

components of all shifted versions are properly mapped, 

weighted and linearly summed to obtain the final output of 

the extracted primary components. Note that the weights are 

computed according to the significance of each shifted 

version. 
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Fig. 1 Typical structure of MSPCA (MSPCA-T). Stereo input 

signal  0 1, ;  iX x x  is the ith estimated ICTD (T is the total 

number of ICTDs);  iX  and ˆ
iP  are the corresponding shifted 

signal and extracted primary component, respectively. The final 

output of the extracted primary components is denoted by ˆ .P  In 

the case of consecutive MSPCA, the time shifting is applied for 

every individual lag. 
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Combining the selective time shifting with the 

significance based weighting method, a consecutive 

structure for MSPCA can also be employed. Instead of 

shifting the input signal according to a few selected ICTDs, 

we perform the shifting consecutively lag by lag. 

Subsequently, PCA based primary extraction is employed 

for each shifted version. Before reversing the one-lag 

shifting and adding to the final output, the extracted primary 

components of each shifted version are weighted based on 

the significance of each shifted version. By assuming that 

those shifted versions having higher ICC are more 

significant, the weights are set higher for the shifted version 

with higher ICC. Via this ICC based weighting method, we 

can unify the consecutive MSPCA and MSPCA-T. 

Let the stereo input signal be  0 1, .X x x  The shifted 

signal is  0 1, l
l X x x  with nth sample of 1

l
x  shifted by l 

lags, as    1 1 ,lx n x n l  where  , .l L L   The extracted 

primary components at the lth shifted version ˆ
lP are 

computed using PCA. The final output of the extracted 

primary components P̂  can be expressed as a weighted sum 

of the shifted back version of ˆ .lP  The nth sample of 

P̂ (either 0p̂ or 1p̂ ) is hence obtained by 

    ˆ ˆ ,
L

l l

l L

P n w P n l


   (3) 

where 0lw    is the weight applied on ˆ .lP  To retain the 

overall signal power, the weights shall sum up to one, i.e., 

1.
L

l

l L

w


 Since the weights in consecutive MSPCA are 

proportional to the ICC of each lag, a straightforward way to 

obtain the weights is to employ the exponent of the ICC, i.e., 

,
L

a a

l l l

l L

w  


   where a is the exponent and 
l  is the ICC 

of lag l. Larger values of a leads to sparser weights. 

Examples of the exponent selection for the weighting 

methods are shown in the following section. 

 

4. EXPERIMENTS AND DISCUSSIONS 

To evaluate the performance of the proposed MSPCA based 

primary extraction, a number of simulations and subjective 

listening tests are conducted. In our experiments, primary 

components consist of a speech signal and a music signal, 

which are amplitude panned by a factor of three and time 

shifted by 20 lags, towards the channel 1 and channel 0, 

respectively; and uncorrelated white Gaussian noise is used 

as the ambient component. Subsequently, the primary and 

ambient components are linearly mixed by setting the root-

mean-square power of the speech, music and ambient 

component to be equal, which means primary power ratio 

equals to 0.67. Next, PCA, SPCA and MSPCA with 

different settings are employed to extract primary 

components from the synthesized stereo signals. The 

searching range for ICTD is ±50 lags, which is around 2ms 

for sampling frequency at 44.1 kHz. Finally, the 

performance of primary extraction using these approaches is 

compared using objective metrics and subjective testing. 

It can be found that PCA and SPCA can be considered 

as special cases of MSPCA by specifically setting the 

weights. Both PCA and SPCA have only one nonzero 

weights, but at different lags. While the corresponding lag 

for the unit weight in PCA is always zero, SPCA places the 

unit weight at the lag corresponding to maximum ICC. Since 

all weights shall sum up to one, this maximum weight for 

PCA and SPCA will be exactly equal to one. MSPCA-T can 

detect the two ICTDs by peak finding. After normalization, 

we can consider it having two nonzero weights at the two 

corresponding lags. For consecutive MSPCA, we examine 

two exponent values, namely, a = 2, 10. Summarizing all 

different settings for these approaches, the weighting 

methods are compared in Fig. 2. As discussed, PCA and 

SPCA have only one nonzero weight at zero lag and -20 lag, 

respectively. For MSPCA-T, two weights are applied at two 

distinct lag positions, though the positive ICTD for the 

music is not as accurate as the negative ICTD for the speech. 

For consecutive MSPCA with different exponent values, the 

non-zero weights are found for all the lags, and apparently 

higher weights are given to those lags that are closer to the 

directions of the primary components. As the exponent value 

a increases, the differences among the weights at various 

lags become more significant. When a is high (e.g., a=10), 
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Fig. 2 An illustration of the weighting methods in PCA, SPCA 

and MSPCAs. Negative and positive lags correspond to the 

direction towards the channel 1 and channel 0, respectively. 
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the weighting method in consecutive MSPCA becomes 

similar to SPCA, as seen from Fig. 2(b) and Fig. 2(e). 

After applying these approaches, the objective 

performance on the extraction accuracy of the primary 

component is determined by error-to-signal ratio (ESR), 

which can be computed by [23] 

 

2 2

0 0 1 12 2
10 2 2

0 12 2

ˆ ˆ
ESR(dB) 10log 2 .

   
   
    

p p p p

p p
 (4) 

A better performance is achieved when ESR is smaller. The 

ESR results for these approaches are illustrated in Fig. 3. It 

is obvious that MSPCAs generally perform better than PCA 

or SPCA by having smaller ESR. It is also quite interesting 

to observe that consecutive MSPCA approaches outperform 

MSPCA-T. On this note, the accuracy in the estimation of 

the number of the directions and the associated ICTDs are 

extremely critical for MSPCA-T. Failure to accurately 

estimate any ICTDs will degrade the overall extraction 

performance, as observed here. By contrast, consecutive 

MSPCA mitigates this problem by applying weights at all 

lags. Furthermore, the averaging of the ambient components 

across various shifted versions could also reduce ambient 

leakage in the extracted primary components. Between the 

two consecutive MSPCA approaches, MSPCA(a=2) 

performs better than MSPCA(a=10). Therefore, the 

exponent applied on the ICC for the weights in consecutive 

MSPCA cannot be too large. 

In addition to the objective assessment on the error 

performance, subjective testing of localization accuracy of 

the primary extraction was also conducted. The testing 

method was based on MUltiple Stimuli with Hidden 

Reference and Anchor (MUSHRA) [32], [33]. Nine signals, 

including primary components extracted using the five 

methods, one known reference, one hidden reference and 

two anchors, were tested. The subjects were asked to rate a 

score of 0-10, where a score of 0 denotes the worst 

localization (i.e., the two directions are reversed), and a 

score of 10 denotes the same directions perceived as the 

reference. When at least one direction is accurate, a score of 

no less than 5 shall be given, and a score of 3-7 shall be 

appropriate for those signals with perceived directions 

neither too close nor too bad. Finally, 12 subjects 

participated in the experiment and the results are shown in 

Fig. 4. Generally, MSPCAs produce more accurate 

localization of the primary components among these testing 

methods. Similar to the observation in ESR, MSPCA(a=2) 

performs the best and MSPCA(a=10) degrades the 

localization significantly. Therefore, it can be concluded that 

consecutive MSPCA with proper weighting can help 

improve both the extraction accuracy and localization 

accuracy of the primary components when there are multiple 

directions. 

 

5. CONCLUSIONS 

In this paper, we investigated the problem of primary 

component extraction from stereo signals that consist of 

primary components coming from multiple concurrent 

directions. To account for these directions, a multi-shift 

PCA approach is proposed in this paper. Two different 

structures of MSPCA are examined. While MSPCA with 

typical structure is simpler, its performance relies heavily on 

the correct estimation of the ICTDs. By contrast, 

consecutive MSPCA is more robust by applying weights on 

all shifted versions. The weighting method for different 

shifted versions is found to be critical to the extraction 

performance. In general, applying the exponential function 

of ICC with proper exponent value as the weightings yields a 

good performance in terms of the extraction accuracy as well 

as localization accuracy. Future works include study on how 

to determine the exponent value in the ICC based weighting 

method as well as other weighting methods. 
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Fig. 3 Objective performance on extraction accuracy measured 

by ESR for PCA, SPCA, MSPCAs. 
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Fig. 4 Subjective performance on localization accuracy for 

PCA, SPCA, MSPCAs. 
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