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ABSTRACT
We study the problem of microphone array localization in a strongly
reverberant room, where time of arrivals (TOA) or time difference
of arrivals (TDOA) cannot always be measured precisely. Instead,
we use frequency-domain measurements to calibrate the array posi-
tion, based on the modes of the room, excited by a wide-band single
source, that can be unknown. By using the fact that each measured
mode can be decomposed as a sum of model-based polynomials, we
build a cost function whose minimum indicates the positions of the
microphones. A simple Block Coordinate Descent algorithm can be
used to minimize this cost function. Numerical results indicate that
this algorithm converges to the right solution, and therefore that us-
ing frequency measurements for position calibration is a valid con-
cept for dense arrays, as an alternative to time-domain methods in
reverberant domains.

Index Terms— Array position calibration, modal interpolation,
reverberation

1. INTRODUCTION

A general trend in microphone arrays is to massively increase the
number of microphones, especially with the increase of compu-
tational power and the availability of cheap digital MEMS micro-
phones [1]. For most signal processing applications, such as acoustic
imaging, it is essential to determine the geometry of the array, i.e.
the position of each microphone. However, a direct measurement
of the absolute position of each microphone is sometimes difficult
to achieve, or extremely cumbersome - this is typically the case
for very large arrays, ad-hoc arrays, or random arrays that have
become more popular with the paradigm of Compressed sensing [2].
Therefore, in the past few years, a number of methods have been
developed, whose goal is to determine the relative position of each
microphone using purely acoustical measurements, with a number
of point-like calibration sources emitting around the array. Most
of these approaches are based on time-of-flight measurements be-
tween sources and microphones, so-called Time Of Arrival (TOA)
or Time Difference Of Arrival (TDOA). The array geometry is then
determined with multidimensional scaling (MDS) [3]. Often, the
challenge of such methods is to find tractable closed-form solutions
to the calibration problem [4, 5, 6, 7, 8, 9].

Although the formulation of these time-domain methods are
more and more efficient in simple environments, they are difficult to
exploit in complex domains, such as rooms, especially when rever-
beration, noise, limited bandwidth of the emitted signals, sampling
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precision, or heterogeneities in the environment make the measure-
ment of TOA / TDOA difficult. Furthermore, TOA / TDOA models
assume point-like sources and microphones. While this assumption
is reasonable given the minimum wavelength λ = .017 m (i.e.
f = 20000 Hz) in the audible bandwidth and the typical size of
measurement microphones (1/2” or 1/4”), it is often not the case for
most wide-band sources : for many loudspeakers, the position of the
centre of phase (equivalent point source) is frequency-dependent.
Finally, the computation of the positions from TOA / TDOA might
involve strong nonlinearities, and therefore small errors on the
TOA / TDOA estimations can translate into large errors on the
estimated array geometry.

Alternatively, a few models based on measurements in the fre-
quency domain have recently emerged. They are based on a model
of diffuse acoustic fields, which can be seen as an infinite superpo-
sition of plane waves coming from all directions, or explained by a
uniform density of energy inside the propagation domain [10]. The
intercorrelations of these fields measured at pairs of microphones
provide estimates of covariance matrices. Each element (i ; j) of
the covariance matrix can be analytically modeled [11, 12, 13] as a
sinc function, whose argument is the product of the wavenumber k
and the distance rij between microphones i and j. Fitting the ana-
lytic covariance matrix on the measurements, it is possible to retrieve
all pairwise distances between microphones, and then again to apply
MDS techniques in order to deduce the array geometry. Neverthe-
less, diffuse field calibration techniques have their own limitations.
Prima facie, it is difficult to establish a real isotropic diffuse field
into a given environment. Furthermore, heterogeneities and bound-
ary conditions of the environment modify the covariance, that cannot
always be modeled as a sinc function. Finally, this covariance model
can only be used in practice for close microphones, as measurement
noise renders all estimations unreliable for distant microphones.

In this article, we investigate a different paradigm for array cali-
bration in reverberant rooms, with frequency-domain measurements.
Unlike TOA-based methods which require the measurement of sev-
eral sources, we only use a single source to emit a wide-band signal
that excites the modes of the room. Based on harmonic polynomial
expansions of solutions to the Helmholtz equation, it is possible to
spatially interpolate the measured modes. As these harmonic poly-
nomials depend on the microphone positions, a cost function can be
built that compares the modeled values with their measured coun-
terparts. Minimizing this cost function provides the positions of the
microphones.

To summarize our work, we make the following contributions :

• a new method for array position calibration using only one
source, based on the measurements of the eigenfrequencies
(modes) of a room, the interpolation of the homogeneous
Helmholtz equation and the minimization of a cost function ;
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• an efficient iterative algorithm, in order to reach the global
minimum of this non-convex function ;

• a discussion on the limitations of this calibration technique ;

• some numerical simulations in the case of two-dimensional
domains, that show the relevance of the method.

2. CALIBRATION MODEL

LetD be a closed domain with unknown boundary conditions (B.C.)
(Neumann, Dirichlet, etc.), modeling a reverberant room. An acous-
tic field is created by a wide-band source S (impulse, white noise,
sweep sine), and is sampled by a set of microphones at positions
xn, distributed within a sub-domain Ω ∈ D. The measurement vec-
tor is noted p, expressed in the Fourier domain. Depending on the
dimensions of the room, the emitted signal excites some specific fre-
quencies, that are called the eigenfrequencies of the room, and that
correspond to the modes of the domain. The modes of D are natural
solutions to the homogeneous Helmholtz equation measured in the
set Ω: {

∆p0 + k2p0 = 0 in Ω
+ unknown B.C. on ∂Ω

(1)

From the set of point measurements, a given mode can be in-
terpolated within the convex hull of the set of measurement points
thanks to the Vekua theory [14, 15], that demonstrates that harmonic
polynomials can be used to approximate solutions of the homoge-
neous Helmholtz equation. In two-dimensional cases, these polyno-
mials are Fourier-Bessel (F-B) functions of order l whose expression
depends on the polar coordinates (rn ; θn) of a microphone n, and
on the wavenumber k of the mode (they have to be replaced by spher-
ical harmonics in three-dimensional cases [16]). Special care has to
be taken in the choice of the origin for the coordinate system, as F-B
functions must be centered in the measurement set. Taking the cen-
ter of mass of the measurement domain Ω as origin minimizes the
number of F-B functions needed to describe the field.

In [17], F-B functions were used to interpolate the modes of a
plate inside the convex hull of the measurement points, delineating
the domain Ω (this also applies in the three-dimensional case). The
authors used the fact that the pressure field measured at frequency f
and wavenumber k can be decomposed as :

p = Wα (2)

where W is a dictionary of F-B functions of order −L ≤ l ≤ L, L
being the maximal order of the decomposition, and α is the vector
of coefficients of the projection.

Generally, given a number N of microphones, a mode of
wavenumber k and a measurement set Ω whose convex hull has
a radius R, the minimal order L of F-B functions needed to interpo-
late the mode, in a 2D case, is approximately equal to :

L ' dkRe (3)

where d·e denotes the ceiling integer rounding function.
For two-dimensional domains (plates, membranes), an atom of

the W basis, for microphone n and at order l then writes :

Wnl = Jl(krn)ej·lθn (4)

where Jl(z) is the Bessel function of first kind.
Here, it is important to stress that the basis W is parametrized by

the positions of the microphones. When these positions are known,
the representation of the field as a linear combination of the atoms

of W is consistent with the measurements, up to the modeling error
(i.e., the finite order of F-B functions). On the contrary, if the sensing
positions are unknown or inaccurate, there is no guarantee that the
decomposition will be possible, as the F-B functions for the basis
might be built upon inaccurate positions. In that case, the model will
not be able to explain the measured field at the sensing positions. We
use this fact to build our calibration model.

Let Wε be the Fourier-Bessel dictionary built with incorrect po-
sitions xε. It is still possible to decompose the measured field p on
Wε, by inverting equation (2) to calculate the αε coefficients :

αε = Wε
†p (5)

with .† denoting the Moore-Penrose pseudo-inverse. Now, by ob-
serving that the dictionary is not built upon the actual sampling po-
sitions, the reconstructed field pε

pε = Wεαε (6)

is such that pε 6= p.
Then we address the following optimization problem “find the

positions x of microphones such that pε = p”, which can be rewrit-
ten, using joint penalization over eigenfrequencies, as :

x = min
xε

∑
k

‖pε − p‖2 = min
xε

∑
k

‖(WεWε
† − 1)p‖2 (7)

As visible on equation (7), this least-squares optimization is equiv-
alent to minimizing the projection of the measurements p onto the
kernel of the orthogonal space defined by span(Wε).

3. RESOLUTION METHOD

This cost function is highly non-convex, with a lot of local minima.
Furthermore, the number of variables, i.e. the number of positions
of all microphones, can be large. In order to reach the global min-
imum, we have used a simple algorithm based on block-coordinate
descent, optimizing the position of one microphone, in all directions,
at a time. A discrete grid of candidate positions is built, at the small-
est spatial resolution of the problem, with one microphone set as the
origin. The microphones positions are first initialized at random onto
the grid. Then, all positions are blocked except one that is replaced
successively by all the test positions. The position that corresponds
to the minimum of the cost function in this actual array configura-
tion replaces the initial position. The center of mass of the array is
updated and the F-B basis is recentered accordingly. Then the next
microphone position is optimized, etc.

To illustrate the non-convexity of the cost function, we give here
a simple example with a two-dimensional rectangular array (square
Shannon sampling), with only one misplaced microphone. As the
modes of a room are of infinite expansion and draw a regular pattern,
several positions exist where the microphone will measure the same
field for the mode of wavenumber k. However, only one position is a
joint minimizer for all the modes. This demonstrates the necessity of
using multi-modal measurements (at different frequencies), as seen
on figure 1, where the use of several modes helps the convergence
to the true global minimum. In practical cases, when more than one
position is incorrect, this issue gets all the more important.

A further refinement is used to ease the optimization, based on
the fact that two local minima are roughly distant from a wavelength
λ = 2π

k
. At low frequencies, λ is large (for example in air, for

f = 340 Hz the wavelength is λ = 1 m). Then, the minimum of the
cost function should be more spatially extended. In return, it will be
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Fig. 1. Cost functions for 3 frequencies for a rectangular array
(square sampling), when moving only one microphone around its
true position, and sum (bottom right plot) of the 3 cost functions.
Circle : true global minimum. Cross : position of the minimum at
convergence.

more difficult to have a good accuracy on the estimated positions. On
the contrary, high frequencies give a better precision on the estimated
positions but have cost functions with a lot of local minima, as the
wavelength gets smaller. By starting the optimization process using
only modes at low frequencies, it is possible to have a first coarse
estimation of the microphones positions. Then higher modes are
added progressively (once the array configuration is trapped into a
minimum for a given number of modes), for better accuracy. Thus,
several local minima are avoided and the iterative method is more
likely to converge to the global minimum.

4. LIMITATIONS OF THE MODEL

The fact that this method is based on the spatial interpolation of the
modes implies some constraints on the array. For example, the spa-
tial distribution of microphones impinges on the interpolation error.
It was shown in [18, 19] that the optimal way to sample solutions of
the Helmholtz equation in a domain Ω of radiusR is to place most of
the measurements on the border ∂Ω of the domain of interest, so that
the distribution satisfies on average the spatial Shannon-Nyquist cri-
terion for the mode of maximal frequency that will be interpolated.
Some extra measurements points have to be added in the interior of
Ω, so that the interpolation in the least-squares sense is regularized
on the eigenfrequencies of the array. This implies that the method
will better work with arrays that are “well-sampled” on the domain
border (but not necessarily uniformly distributed), or with dense ran-
dom arrays with enough microphones to compensate the fact that ∂Ω
is not optimally sampled. As with all the other methods for position
self-calibration, the domain Ω also needs to be homogeneous, i.e.
with no obstacle nor velocity change inside the array.

It follows from these constraints and from (3) that the total num-

ber of functions L used to build W is :

L = 2L+ 1 (8)

As the maximal value ofL to guarantee the stability of this least-
squares approximation isL = N , and it follows from (3) and (8) that
the highest frequency for interpolation is approximately :

fmax '
(N − 1) · c0

4πR
(9)

with c0 the sound velocity in the medium.

5. NUMERICAL EXPERIMENTS

To confirm the validity of the method, different numerical scenar-
ios of antenna are investigated in two dimensions, simulating the
calibration experiment on plates or membranes. Using the FDTD
method [20], we simulate the propagation of a wide-band source
(20 Hz - 3000 Hz), inside a rectangular domain of dimensions 6 m×
5 m. The sampling frequency is set to fs = 28590 Hz so that the
spatial grid is sufficiently fine. The emitted signal is recorded on 65
points of the grid representing the locations of the 65 microphones,
distributed in a small sub-domain of the room.

After taking the Fourier transform of the recorded signals, we
select manually the increasing frequencies of the modes visible in
the power spectrum (this task could easily be automated), starting
from the lowest frequency, here approximately 30 Hz, to 1000 Hz.

−0.4 −0.2 0 0.2 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Axis X (m)

A
xi

s 
Y

 (m
)

−0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.2

0

0.2

0.4

0.6

Axis X (m)

A
xi

s 
Y

 (m
)

Fig. 2. (Left) Array 1 : calibration state at iteration 60. (Right) Array
2 : calibration state at iteration 120. Black circles : real positions.
Red crosses : current estimated positions. At convergence, markers
are superimposed.

We compare two array geometries, both with 65 microphones.
The first array is quasi-circular (circle quantized on grid positions),
of radius r = .35 m. It approximates the “ideal” sampling scheme
described above. In the second array, 29 microphones are randomly
placed with uniform distribution, within a square regular array of
6 × 6 = 36 microphones and size 1 m. The grid of test positions is
of dimensions 1.2 m × 1.2 m with a precision of .01 m. The radius
parameter used to set the order L of the F-B expansion is chosen as
R = .8 m, slightly larger than the spatial grid.

For the sake of simplicity, we fix the array coordinate system by
assuming that the positions of 3 microphones are known. It should
be acknowledged that this gives more constraints than needed as,
minimally, one only has to fix the position of one microphone (avoid-
ing translation indeterminacies), the direction of a second micro-
phone (avoiding rotations) and the sign of the scalar product of a
third microphone onto the line defined by the first 2 microphones
(avoiding a mirror symmetry).
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Fig. 3. Mean position error as a function of the number of iterations, (left) array 1, (right) array 2. Each vertical red dashed line represents
the addition of a new modal frequency into the cost function.

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

Number of modes

M
ea

n 
er

ro
r o

n 
th

e 
po

si
tio

ns
 (m

)

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

Number of modes

M
ea

n 
er

ro
r o

n 
th

e 
po

si
tio

ns
 (m

)

Fig. 4. Mean position error as a function of the number of modes, (left) array 1, (right) array 2.

Then, the positions of all microphones are estimated with the op-
timization algorithm. In figure 2, the real and estimated positions of
the two arrays are represented during the optimization phase, before
convergence (at convergence, exact positions are retrieved). Figure 3
represents the mean error of microphones positions as a function of
the number of iterations. Each red dashed line represents the ad-
dition of a new frequency into the cost function. As expected, the
error decreases quickly for the first few low-frequency modes but
needs more and more frequencies to reach the global minimum.

The mean error of calibration is also represented as a function of
the number of modes, on figure 4. For the quasi-circular array, only
57 modes were needed to minimize the cost function, the highest
mode having a frequency f = 328 Hz. This value is not very high,
compared to the highest frequency that can be interpolated with this
array. Indeed, considering equation (9), fmax ' 4950 Hz. For the
second array, 39 modes were needed, the highest frequency being
f = 262 Hz, whereas fmax ' 3460 Hz.

Here the reference known microphone was chosen at random
but these simulations confirm that, in a general case, it is better to
choose this reference microphone near the center of gravity of the
array. This helps the regularization of the modes interpolation, espe-
cially with non-dense arrays. Figure 5 displays the error of calibra-
tion for each position of array 2, averaged over all the iterations of
the optimization (before convergence), as a function of the distance
to the reference microphone. For this application, the reference mi-
crophone was chosen at one corner of the array. It can be seen that
the mean error increases with the distance to the origin : the fur-
thest microphones are the last to be correctly located. Choosing the
reference microphone around the centre of the array would ease the
optimization, especially for non-dense arrays.

6. CONCLUSION

In this work, we have used modal interpolation techniques to propose
a new method for the calibration of the geometry of a microphone
array placed in a reverberant room. It is based on frequency measure-
ments, instead of the TOA / TDOA used in most standard methods -
this can be useful when TOA / TDOA cannot be precisely measured.
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Fig. 5. Array 2 : mean error of calibration over all iterations of the
optimization step (before convergence) in function of the distance
between each microphone and the reference microphone (N.B. : at
the end of the optimization step, estimated positions converged to
the true positions).

Using only one wide-band source, that does not need to be known
nor point-like, and the decomposition of the measured modes of a
room onto a basis of Fourier-Bessel functions, we have built a cost
function that is minimized at the position of the microphones.

However, the optimization of this cost function is non-trivial, as
it is highly non-convex. Here, a simple Block Coordinate Descent
iterative method was used, and was made more robust by progres-
sively increasing the bandwidth. Numerical tests in 2D confirm the
relevance of this approach, which must now be generalized to 3D,
where the same theoretical arguments hold, by replacing the F-B
functions by spherical harmonics. Further effort should also be spent
on more efficient optimization methods, both in terms of computa-
tion time and probability of success. Finally, the robustness to noise
must be thoroughly investigated. However, as our algorithm relies
on least-squares optimization, it should handle well gaussian noise.

Another extension of this work will be the study of cases where
the room geometry is known. In that case, the relative position of
the microphones could be identified with much less measurements,
alleviating the requirement for dense arrays. It is important to stress
that this would also give the absolute position of the array in the
room, which can be very useful in practical scenario (e.g. for source
localization) and is not addressed by most TOA / TDOA - based
methods, with the notable exception of [8].
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