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ABSTRACT 

Accurate DOA estimation based on clustering the inter-sensor data 

ratios (ISDRs) of a single acoustic vector sensor (AVS), referred as 

AVS-ISDR, relies on reliable extraction of time-frequency points 

with high local signal-to-noise ratio (HLSNR-TFPs) and its 

performance degrades in noisy environments. This paper 

investigates deep neural networks (DNNs) trained with noisy-clean 

speech pairs under different SNR levels and noise types to improve 

the performance of AVS-ISDR in noise conditions. The DNNs is 

trained to learn characteristics reflecting the level of speech 

information at different TFPs, which helps to generate a reliable 

spectral mask for obtaining a noise-reduced spectral. 

Correspondingly, a robust DOA estimation algorithm named as 

AVS-DNN-ISDR has been developed. Experimental results verify 

the proposed DNN-based spectral mask improves the reliable 

HLSNR-TFPs extraction at different SNR levels. Results from 

simulations and real AVS recordings further validate AVS-DNN-

ISDR achieving high DOA estimation accuracy even when the 

SNR is lower than 0dB. 

Index Terms— Direction of arrival estimation, acoustic 

vector sensor, deep neural networks, spectral mask estimation, 

inter-sensor data ratios 

1. INTRODUCTION 

Direction of arrival (DOA) estimation of the spatial speech source 

is a key technique in many applications such as video conferencing 

and service robots for identifying the speech source localization 

swiftly and accurately [1]. The acoustic vector sensor (AVS), with 

special properties to provide more information than the commonly 

used scalar sensor arrays, has previously been successfully applied 

in source localization applications [2]. 

In previous work, Li et al. [3] introduced a high resolution 

DOA estimation method using an AVS array under a spatial 

sparsity representation (SSR) framework by making use of the 

relationship between the received data model of the AVS array and 

its subarray manifold. In [3], 8 AVS units with spacing of half of 

the source wavelength were used for data capture, which limits its 

application when the geometry size is the main concern. To reduce 

the size of AVS array, Zou et al. [4] developed the inter-sensor 

data ratios (ISDRs) for multisource DOA estimation with a single 

AVS. In [4], the Sinusoidal tracks extraction (SinTrE) method was 

applied to extract the time-frequency points with high local signal-

to-noise ratio (HLSNR-TFPs) by exploring the harmonic structure 

of speech. Since ISDRs of an AVS are independent on the source 

frequencies, there is no need to consider the spatial aliasing 

problem [5], and it is easy to estimate the elevation and azimuth 

angles at the same time by kernel density estimation (KDE) on the 

ISDRs at the time-frequency points (TFPs) with HLSNR-TFPs. 

However, HLSNR-TFPs extraction is sensitive to noise, which 

corrupts the ISDRs and degrades the DOA estimation performance. 

Deep neural networks (DNNs) acts a nonlinear mapping with 

strong learning capability [6]. Recent research [7] using a greedy 

layer-wise unsupervised learning procedure has successfully 

applied DNNs to automatic speech recognition [8], speech 

enhancement [9] and other related tasks [10], outperforming the 

state-of-art systems. A recent study [11] adopted DNNs to denoise 

acoustic features at each TFP for speech separation. This idea 

motivates us to learn the relationship between the energy of speech 

and noise from the noisy-clean data pairs to generate the spectral 

mask, helping to extract the HLSNR-TFPs more robustly and 

accurately. 

Following the study by Zou et al. [4], this paper raises a novel 

method to help extract the HLSNR-TFPs using DNNs for the 

ISDRs model. Specifically, we train a DNN model with pairs of 

noisy and clean speech signals, and then the recorded speech signal 

is decoded by the trained DNN model to generate the spectral mask, 

which is applied to weight each TF point derived for all AVS 

channels. In this way, the high energies of speech are kept, while 

background noise and high frequency information are removed. 

Hence, reliable HLSNR-TFPs for ISDRs are extracted by SinTrE 

method to obtain a robust DOA estimation. 

Relation to prior work: This work focuses on a robust single 

source DOA estimation based on the ISDR model of a single AVS, 

and first applies the DNNs based spectral mask to improve the 

DOA estimation performance. Compared to common microphone 

array based techniques for DOA estimation [2], the AVS has a 

smaller size and a spatial compact structure which makes it 

attractive for mobile speech applications [12, 13]. Following the 

properties of AVS and the time-frequency (TF) sparsity of the 

speech, Zou et al. [4] proposed a multisource DOA estimation 

algorithm using ISDRs of single AVS, which relies on the reliable 

HLSNR-TFP extraction and estimating the mean value of ISDRs 

using clustering method.  

 Recent studies show that an estimated mask value at each TFP 

independently has been used to suppress reverberation and noise 

for speech intelligibility [14, 15]. Wang successfully estimated the 

ideal binary mask (IBM) using DNNs for monaural speech 

separation [16, 17]. Li et al. proposed a robust spectral masking 

system based on DNNs trained on the same filter-bank features for 

improving the performance of acoustic modeling in noise-robust 

speech recognition [18].  

The remaining of this paper is organized as follows. Sect.2 

provides the DOA estimation with single AVS. We then describe 

our proposed DNNs based spectral mask estimation and DOA 

estimation system in Sect.3 and Sect.4, respectively. Experimental 

results are presented in Sect.5. We conclude our study at last. 

325978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



 

2. DOA ESTIMATION WITH SINGLE AVS 

For completeness, we firstly give a brief illustration of DOA 

estimation with single AVS based on TF domain sparsity. Here we 

term this DOA algorithm as AVS-ISDR in short.  

2.1. Data Model for AVS 

Generally, an AVS composes of four sensors, where the 

omnidirectional sensor and three directional sensors are defined as 

the o-, u-, v- and w-sensor, respectively. As the four-sensors AVS, 

the manifold vector for the spatial speech s(t) with DOA of (s,s) 

can be denote as [4] 

 4 1( , ) [ , , ,1] ,T
s s s s su v w R   a a   (1) 

where s[0,180°], s[0,360°) are the elevation and azimuth 

angle respectively, and [.]T denotes the matrix transposition. 

Elements us, vs and ws are named the x-, y-, z-axis direction cosines 

respectively, given by 

 sin cos , sin sin , coss s s s s s s su v w         (2) 

The data captured by the AVS at time t is expressed as [4] 

 ( ) ( , ) ( ) ( )s st s t t  x a n   (3) 

where x(t)=[xu(t), xv(t), xw(t), xo(t)]T denotes the output of the AVS, 

consists of the u-, v-, w- and o-sensor, respectively. n(t)=[nu(t), 

nv(t), nw(t), no(t)]T are the additive zero-mean Gaussian noise at the 

u-, v-, w- and o-sensor respectively, which are assumed 

uncorrelated to the speech source and uncorrelated to each other.  

2.2. Inter-Sensor Data Ratio Model 

It is commonly accepted that speech signals have sparsity in TF 

domain [5], which indicates that only one speech source with 

highest energy dominates and the contributions from other sources 

can be negligible at a specific TF point (. Following this 

assumption, taking the short-time Fourier transform (STFT) of (3) 

in a compact form gives  

 ( , ) ( , ) ( , ) ( , )s s S        X a N   (4) 

where X(=[Xu(Xv(Xw(Xo(]T. S() is STFT 

of s(t) and N(=[Nu(Nv(Nw(No(]T is the 

STFT of n(t).  

Then the ISDRs of the AVS in the TF domain can be defined as [4] 

 ( , ) ( , ) ( , ), , ,jo j oI X X j u v w         (5) 

where Iuo(Ivo(, Iwo(are the ISDRs between u- and o-

sensor, v- and o-sensor, w- and o-sensor, respectively. 

With the HLSNR-TFP () effectively extracted by the SinTrE 

method, (5) can be reformulated as 

 ( , ) ( , ), , ,jo j joI b j u v w         (6) 

where bj is specified as us, vs and ws for j= u, v, and w, respectively. 

uo(vo( and wo(can be viewed as the residual error 

caused by additive noise, room reverberation and model mismatch. 

A detailed inference is proven in [4]. 

2.3. ISDRs Clustering Based DOA Estimation 

From the description above, it is clear that the ISDRs 

Iuo(Ivo(Iwo(can be viewed as random variables in TF 

domain with mean of us, vs and ws, respectively [4]. Specifically, 

the DOA estimation task is to estimate the cluster center at (us, vs, 

ws) by clustering the ISDRs corresponding to all HLSNR-TFPs. 

This can be achieved using kernel density estimation (KDE) [19, 

20] applied to the ISDRs to give the clustering result ( ˆsu , ˆsv , ˆ sw ) 

associated with the extracted HLSNR-TFPs. Finally, the DOA 

information can be estimated by  

 1 1ˆ ˆˆ ˆ ˆcos , tan ( )s s s s sw v u      (7) 

3. PROPOSED DEEP NEURAL NETWORKS BASED 

SPECTRAL MASK ESTIMATION 

As mentioned above for the AVS-ISDR algorithm, HLSNR-TFPs 

extraction is key to DOA estimation performance. To some extent, 

the HLSNR-TFPs extraction is sensitive to the strong noise and 

reverberation. Hence, we propose spectral mask estimation using 

DNNs to help identify reliable HLSNR-TFPs.  

3.1. DNNs Training 

The DNNs training schedule includes an unsupervised pre-training 

phase and a supervised fine-tuning stage [21] with a collection of 

pairs of noisy and clean speech represented by the log-power 

spectra features [9]. We first pre-train a DNNs using a deep 

generative model of noisy log-spectra by a stack of multiple 

restricted Boltzmann machines (RBMs) in an unsupervised fashion 

[6]. The left part of Fig.1 describes the RBM pre-training from 

noisy data [9]. The first one denotes a Gaussian-Bernoulli RBM 

with one visible layer of linear variables, connected to a hidden 

layer. Then a pile of Bernoulli-Bernoulli RBMs is stacked behind 

the Gaussian-Bernoulli RBM. Afterwards, they can be trained 

layer-by-layer in an unsupervised greedy fashion [7]. During that, 

the contrastive divergence (CD) algorithm is used to update the 

parameters of each RBM [6]. 

The DNNs is initialized after pre-training, and then taking the 

noisy speech represented by the log-power spectra features as the 

input layer of DNNs and its corresponding clean features as the 

output layer [9]. The procedure of fine-tuning is described in the 

right part of Fig.1. The back-propagation algorithm with 

maximizing the across-entropy learning criterion between the 

target and the predicted output is used for fine-tuning in supervised 

manner [21].  

3.2. DNNs Based Spectral Mask Estimation 

From the output of DNNs, it is interestingly noted that the energy 

of speech and noise can be easily differentiated when the signal 

frequency is less than 1500Hz. This phenomenon can be associated 

with the fact that the majority of energy of speech is distributed in 

the fundamental frequency and a series of harmonic frequencies 

[22], which mainly range to no more than 1500Hz. Motivated by 

this, we propose a binary energy spectral mask to weight each TFP 

representation based on the output of DNNs, which can be defined 

as 

 
1 ( , )

( , )
0

if P
m

otherwise

  
 


 


  (8) 

where P(denotes the output of DNNs. In this study, the 

threshold η is set to 0.5 by empirical results. With this spectral 

mask, we have kept the high energy of speech and reduced the high 

frequency information and background noise using: 

 ˆ ( , ) ( , ) ( , )Tm     X X   (9) 

where ˆ ( , ) X is the masked spectrum, with which the reliable 

HLSNR-TFPs can be extracted by the SinTrE method. 

 
Fig. 1. Left: the RBM pre-training. Right: fine-tuning stage [9]. 

326



 

4. THE PROPOSED DOA ESTIMATION SYSTEM 

To illustrate the task of DOA estimation effectively, we describe 

the proposed DOA estimation system shown in Fig.2. The 

proposed algorithm is termed as AVS-DNN-ISDR in short, which 

is developed under the cluster of ISDR data using a single AVS. 

The system consists of two stages. 

DNN training stage: 1) Extract the log-power spectra features 

of clean and noisy speech set with the overlap Hamming window; 

2) Train the DNNs with the noisy log-power spectra features as the 

input layer and its corresponding clean features as the output layer; 

3) Save the DNNs model with the parameters of each layer. 

DOA estimation stage: 1) Extract the log-power spectra 

features of the o-sensor data and calculate the STFT of the AVS 

output data; 2) Get the binary energy mask through the DNN 

decoding; 3) Add the mask on the STFT of all four sensors in each 

TFP; 4) Extract HLSNR-TFPs by the SinTrE method; 5) Compute 

the ISDRs by (5) on the HLSNR-TFPs; 6) Estimate the DOA via 

(7) by the clustering result derived using KDE [19, 20]. 

5. EXPERIMENTS AND RESULT ANALYSIS 

In the DNN training stage, 2000 utterances from the training set of 

TIMIT database [23] are taken randomly.  Additive Gaussian white 

noise (AWGN) and Babble noise with SNR levels varying from -5 

to 30 dB increased by 5dB are added to the utterances to build a 

training set. This generated training set, which is a collection of 

large noisy training data (including one case of clean training data), 

is used to train the DNN models. The speech is down-sampled to 

8kHz with the frame length of 256 samples (32 msec) and a frame 

shift of 128 samples. A short-time Fourier analysis is used to 

compute the DFT of each overlapping Hamming windowed frame. 

The number of epoch for each layer of RBM pre-training is 20. 

Learning rate of pre-training is set to 0.001. We use the cross 

entropy for the loss function of fine-tuning. The mini-batch size is 

set to 256. Input features of DNNs are the 129 dimensions log-

power spectra features [9], which are normalized to zero mean and 

unit variance. The DNNs consists of 3 hidden layers with 512 units 

in each layer. In each DOA estimation trial, the utterance is 

selected from the TIMIT test set with combination of noise types 

and SNR levels. Due to the page limitation, only the results under 

white noise at different SNR levels are given, but the similar 

results have been observed under Babble noise. The performance 

of the proposed AVS-DNN-ISDR algorithm, GMDA-Laplace 

algorithm [5] and AVS-ISDR algorithm [4] are evaluated. The root 

mean squared error (RMSE) metric is used as performance 

measure for DOA estimation accuracy: 

  2 2

1

ˆ ˆ0.5 ( ) ( ) ) /
TN

i i Ti
RMSE N   


      (10) 

where NT is the number of independent trials. and  are the target 

angle. ˆ
i  and ˆ

i  are the estimated angle on the ith trial. 

1) Effect of the training set size  

Fig.3 presents the RMSE of DOA estimation on the test set at 

different SNRs using different training set size of DNNs. Poor 

results are obtained under strong noise if the training data size is 

only 500 utterances, which indicates that sufficient training 

samples are very important to obtain a more generalized model. 

When the training data size becomes larger, the DNN based 

spectral mask provides more reliable HLSNR-TFP extraction and 

greatly improves the performance of DOA estimation in a low SNR 

environment. Even up to 2000 utterances across two noise types 

(nearly 27 hours), the performance is not saturated. 

2) Evaluation of HLSNR-TFP extraction  

This section evaluates the proposed method of combining the 

DNNs based spectral mask and SinTrE method to achieve reliable 

HLSNR-TFP extraction. This experiment is conducted based on 

the previous experiment setting. We compare two methods for 

HLSNR-TFP extraction. One is the SinTrE method, the other is 

our proposed method (DNN-SinTrE in short). Fig.4 shows the 

HLSNR-TFP extraction plotted on the spectrograms of the o-

sensor received data example of AVS by SinTrE and DNN-SinTrE 

methods on different SNR levels. Benefit from the learning 

spectral by DNNs, our proposed method can greatly reduce the 

pseudo HLSNR-TFPs in low SNR conditions, while the SinTrE 

method extracts more and more invalid data with the SNR falls. 

The results further verify the effectiveness and superiority of the 

HLSNR-TFP extraction by the DNN-SinTrE method, which 

indicates the robust DOA estimation in low SNR conditions. 

3) DOA estimation accuracy 

This simulation aims to evaluate the DOA estimation accuracy 

of our proposed AVS-DNN-ISDR algorithm at different angles. 

Specifically, the s of spatial speech source changes from 0° to 

180°, increased by 10°, under s=60° and SNR=0dB without 

 
Fig. 2. Block diagram of the proposed AVS-DNN-ISDR system. Above the red dotted line is the stage for training the DNN model. 

 
Fig. 3. RMSE of DOA estimation on the test set at different SNRs 

using different training set size of DNNs. 
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reverberation. The RMSE is obtained by 100 independent trials on 

each changed s plotted in Fig.5. It is clear that the DOA 

estimation accuracy of our proposed AVS-DNN-ISDR is superior 

to that of other algorithms for all angles. Interestingly, our 

proposed algorithm can keep the RMSE less than 2° for all angles 

under the condition of 0dB, while the AVS-ISDR algorithm has a 

great error at some special angles (e.g. 0°, 90° and 180°).  

4) Robustness of the DOA estimation 

The spatial speech source is located at the DOA of (60°, 45°), 

and the SNR varies from -5dB to 30dB increased by 5dB without 

reverberation. The results are shown in Fig.6 by 100 independent 

trials for each SNR level. It is noted that the performance of our 

AVS-DNN-ISDR algorithm and the AVS-ISDR algorithm are of 

high accuracy (RMSE close to 0°) when SNR is larger than 10dB, 

outperforming that of GMDA-Laplace. In addition, it is 

encouraging to see that the AVS-DNN-ISDR still obtains higher 

DOA estimation accuracy when the SNR is smaller than 10dB, and 

the RMSE is much smaller than that of other two algorithms when 

the SNR is 0, which further verifies our proposed algorithm is 

more effective and robust under strong noise. 

5) DOA estimation with different reverberation levels 

In this experiment, the behavior of the AVS-DNN-ISDR under 

different reverberation levels is evaluated. The room impulse 

response is simulated by the image method [24] with the virtual 

room size of 10×5×4 m3. Five different reverberation time (RT60) 

conditions are considered. The speech source is set at the DOA of 

(60°, 45°) when the SNR is 0dB. The RMSE of DOA estimation 

shown in Fig.7 is conducted by 100 trials for each RT60. It is clear 

that the curve of the AVS-DNN-ISDR method is approximately 

constant and keep a lower RMSE than that of AVS-ISDR for all 

RT60 conditions. This indicates that our proposed method is not 

sensitive to the room reverberation, which is a very favorable 

property since the performance of many exiting DOA estimation 

algorithms degrades when heavy room reverberation exists. 

6) DOA estimation in a real scenario 

We also conduct the DOA estimation by a simple smart car 

with an AVS data capturing system on it, developed by ADSPLAB 

(refer to Fig.8) [4]. In the case of given s=90°, the car will move 

towards the speaker whose azimuth angle is estimated. 

Uncontrolled reverberation is present in the room of about 

8.5×3×5 m3 and background noise includes the noise from air 

conditioning and computer servers. The distance between the 

speaker and the AVS is 1m. Due to paper limitation, 5 different 

azimuth angles are estimated in Table I. It is clear that the 

proposed AVS-DNN-ISDR provides high DOA estimation 

accuracy in a real scenario, which further validate the assumptions 

and derivations of our proposed method.  

6. CONCLUSION 

In this paper, a novel deep neural networks based approach has 

been developed to generate an effective binary energy spectral 

mask, which greatly helps to obtain the enhanced speech 

spectrogram and results in a reliable HLSNR-TFP extraction. 

Accordingly, a robust DOA estimation algorithm termed as AVS-

DNN-ISDR is proposed. Extensive experiments have been 

conducted to evaluate the performance of AVS-DNN-ISDR under 

different SNR levels and noise conditions. Results show that our 

proposed AVS-DNN-ISDR is able to obtain high DOA estimation 

accuracy under strong room reverberation and low SNR noisy 

conditions. Our future work will focus on the multisource DOA 

estimation by the learning DNNs in non-stationary noise situations. 
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Fig. 4. HLSNR-TFP extraction: by SinTrE (blue lines) and 
DNN-SinTrE (red lines). Case 1(Left): clean speech; Case 2 
(Right): AGWN noise at SNR=10dB. 
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Fig. 5. RMSE versus different source DOA. 
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Fig. 6. RMSE versus different SNR levels. 
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Fig. 7. RMSE versus different RT60. 

 

Fig. 8. A simple smart car with an AVS data capturing system 

Table I. DOA estimation results in a real scenario 

True DOA(°) 0 45 90 135 180 

AVS-DNN-ISDR 0.78 45.18 90.35 137.10 180.26 
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