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ABSTRACT

Directivity pattern or beampattern is an important perfance
measure in all fixed beamformers. Given a microphone ar@ay, h
to design the beamforming filter so that the resulting divégtpat-
tern is close to the desired one is a critical issue. In thepave
study the design of such patterns for endfire uniform linearan
phone arrays. By considering the frequency-independeabinev
pattern as the desired one, we derive an optimal beamforfiieg
based on the minimization of the mean-squared error (MSHgun
the distortionless constraint. It is shown that the proddseam-
former design can generate beampatterns that are very tddke
desired ones and, the larger is the number of microphonegetter
is the designed beampattern.

Index Terms— Linear microphone arrays, differential micro-
phone arrays (DMASs), endfire arrays, directivity pattereammpat-
tern design, white noise gain, directivity factor.

1. INTRODUCTION

In real-world environments, speech quality and intelligjpare ad-
versely affected by noise and reverberation. Therefore stieech
enhancement technology, which aims at combating theséepnsh
is essential in many applications such as hands-free telecmica-
tion and hearing aids. Microphone arrays, which are veryniseo
ing for speech enhancement, have been widely studied feralev
decades [1], [2], [3]. Among them, differential microphoaays
(DMASs) have received an increasing research attentiomtlcdd-
MAs have the nice property that their beampatterns are alfres
quency independent [4], [5], [6], [7], [8]. In this paper, Wwasically
show how to design patterns that resemble the DMA ones. Our 0
jective is to describe an optimal approach so that the dedigpam-
patternis as close as possible to the desired one. For tinsegel we
first define the MSE criterion between the endfire array be&empa
and the desired directivity pattern. Then, we formulatedbsign
into an optimization problem that comprises the minimmaf the
MSE criterion subject to the distortionless constraintafiks to the
modified Bessel function, which naturally appears in thenida-
tion, we find the optimal solution to the described probleimBa-
tion results show that the designed beampattern is verg ¢tothe
desired directivity pattern and this design gets bettehasitimber
of microphones increases.

2. SIGNAL MODEL, PROBLEM FORMULATION, AND
DEFINITIONS

We consider a source signal (plane wave), in the farfield,pghap-
agates in an anechoic acoustic environment at the speedinél so
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i.e.,c = 340 m/s, and impinges on a uniform linear sensor array
consisting ofM omnidirectional microphones, where the distance
between two successive sensors is equal tdhe direction of the
source signal to the array is parameterized by the azimugle @n

In this scenario, the steering vector (of lengtf) is given by

d(w,0)
—3(M — 1)wTo cos O

@)

[ 1 e JwTo cosf e
where the superscript is the transpose operatgr= +/—1 is the
imaginary unitw = 2 f is the angular frequency, > 0 is the tem-
poral frequency, andy, = d/c is the delay between two successive
sensors at the angle= 0. The acoustic wavelength is= ¢/ f.

In order to avoid spatial aliasing [1], which has the negagf
fect of creating grating lobes (i.e., copies of the main Jalkich
usually points toward the desired signal), it is necesdaaythe in-
terelement spacing is less thap2, i.e.,

wTo < T. (2)
The condition (2) easily holds for small valuesdénd at low fre-
guencies but not at high frequencies.

We consider designing directivity patterns identical te tmes
obtained with DMAs [4], [5], [6], [7], [8], where the main l&bis
at the angl#® = 0 (endfire direction). For that, a complex weight,
H; (w), m=1,2,..., M, is applied at the output of each micro-
phone, where the superscriptdenotes complex conjugation. The
weighted outputs are then summed together to form the bearafo

bou'[put. Putting all the gains together in a vector of lenthwe get

h(w)=[ Hi(w) Ha(w) Hy () ]" 3)
It is assumed that the desired signal propagates from theead
rection, so that the corresponding steering vectet (s, 0). In our
context, the distortionless constraint is desired, i.e.,
h" (w)d (w,0) =1, (4)

where the superscrigt is the conjugate-transpose operator. Then,
the objective is to design the filteh (w), in such a way that the
beampattern of the array is as close as possible to a degieetivd
ity pattern.

With the filter,h (w), and the source at the endfire direction, the
array gain in signal-to-noise ratio (SNR) is defined as [8]

_ |n” (w)d (w,0)|”
h# (W)Ty (w)h (w)’

G [h(w)] ®)
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whereT'y (w) is the pseudo-coherence matrix of the noise signalwhere

vector.

The most convenient way to evaluate the sensitivity of thayar
to some of its imperfections is via the so-called white najsén
(WNG), which is defined by takin'v (w) = I in (5), wherel
isthe M x M identity matrix, i.e.,

_ T @d@ol

The maximum WNG is given by [8]
Winax [h (w)] = M. 7)

1

bo== [ B(0)dod, (16)
™ Jo

bi=2 [ B(6)cos(i6)do, i > 1. 7
™ Jo

Now, if we limit this series to the orde¥, 15 (¢) can be approximat-
ed by

N
By (0) = Z bn cos (nd) ,

n=0

(18)

which is a trigonometric polynomial of ordeN. The func-

Another important measure, which quantifies how the micro+jon 5, (6) is, in fact, a very general definition of a frequency-

phone array performs in the presence of reverberationeiditectiv-
ity factor (DF). Considering the spherically isotropicf{dse) noise
field, the DF is defined as

b (w)d (w,0)]

Dhw)] =17 @) Ta @ h (@) ®)
where the elements of thel x M matrixI'q (w) are
@],y = 200 e - iml. @
The maximum DF is given by [8]
Dinax [0 (@)] = 4 (w,0) T3 (w)d (,0), (10)
and it can be shown that [9]
lim Do [ (w)] = M2, (11)

3. BEAMPATTERNS

The beampattern or directivity pattern describes the geitgiof the
beamformer to a plane wave (source signal) impinging on traya
from the directiord. For a uniform linear array, it is mathematically
defined as

Bas [h(w),0] = d” (w,0)h (w) (12)

M
_ Z Hop () J(m — 1)wo cos 6
m=1

Recall thath (w) is designed so that the array looks in the direction

0 = 0. For afixedh (w), it is obvious that

Bar[h(w),—6] = By [h (w), 6] (13)

and

B [h(w),9—|—27r] = Bu [h(w),(?] (14)

Therefore, the complex functidfi; [h (w) , 6] is even and periodic.
As aresult, the study dxs [h (w) , 6] is limited to6 € [0, 7).

Let B (#) be a real even periodic function with peri@a and
such that ;" |B ()| d6 exists, then3 () can be written in terms of
its Fourier cosine series:

B() = i by, cos (nh) , (15)
n=0
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independent directivity pattern of ordaf. Itis very much related to
the directivity pattern of aivth-order DMA [4], [8]:

N
By (0) = Z an, cos” 0,

19)
n=0
and any DMA pattern can be designed wi; (¢). Indeed, we
know from the usual trigopnometric identities that
cos" 0 = Z c(n, i) cos[(n —2i) 6], (20)

2

wherec(n, 7) are some binomial coefficients. Substituting (20) into
(19), we deduce that any DMA pattern can be written as a genera
pattern,By (0). Itis well known that

cos (nf) =T, (cosb), (21)

whereT, (-) is thenth Chebyshev polynomial of the first kind [10],
which have the recurrence relation:

Tht1 (cos0) = 2cosO x T, (cos @) — Tr—1 (cos0) (22)

with
To (cos0) =1, T1 (cos @) = cos@.

Thus,cos (nf) can be expressed as a sum of powersosfy. Con-
sequently, any general pattern can be written as a DMA patt®e
can then conclude th#ty (6) andBYy (0) are strictly equivalent.

The relations between the coefficiemts n = 0,1,..., N of
B (0) and the coefficients,,, n = 0,1, ..., N of By (6) for the
first three orders are as follows:

e N =1:by=ao, by =a;

o N=2byo=ao+ %, b =a,b == and

e N=31bg=ao+ %2, b1 =ar+ 298, by =2, b3 =13,

For convenience, we can also express (18) as

By (6) =t (6)b, (23)
where
t(0)=[1 cosd cos (N6) 1" (24)
and
b=1[bo b bn " (25)

are two vectors of lengtiv + 1.



In the rest, we need to make sure that at 0, we have

Bn (0) = By (0) = 1. (26)
Therefore, we will always choose
N
ap=1-— Z Qn, (27)
n=1
N
bo=1-> by (28)
n=1

4. MEAN-SQUARED ERROR CRITERION

Considering the frequency-independent Chebyshev patsarrio),
as the desired directivity pattern, the objective beconoeind a
proper filter,h (w), so that the array beampattefSw, [h (w), 6], is
as close as possible By (6). From now on, it is assumed théis
a real random variable, which is uniformly distributed ie thterval

[0, ]. We define the MSE criterion between the array beampattern

and the desired directivity pattern as
MSE [h ()] = E {|Ba [h () , 6] — Bn (6)°} (29)
—E UdH (w,0) b (w) — t7 (9)bﬂ
— b () ®a (©) h (W) — h¥ () Bas (W) b
—b @ (w)h (w) + b Bb,

whereFE{-} denotes mathematical expectation, and

Bq(w)=E [d (w,0)d" (w, 9)} , (30)
Bae (w) = B [d (w,0)t" (9)] , (31)
= E [t 0)¢" (9)] . (32)

The (i, j)th element of thé\/ x M matrix @4 (w) can be com-
puted as

[®a (W)],; = FE [6JW(J — )70 cos 9] (33)
_1 /7r GJw(i — )70 cosb 4y
™ Jo
= Io [jw(j — i)70],
where
_ 1 " zcosf
In(Z) = - e Ccos (’n,@) dé (34)
T Jo

is the integral representation of the modified Bessel fonctif the
first kind [10].

In the same way, we can compute thiej)th element of the
M x (N + 1) matrix ®q¢ (w) as follows:

{e—jw(i —rocost (G — 1)9]} (35)

/O emIw(i=1)T0cos0 o ri 1)g] g

[®at ("J)]L] =EB
1

™

=T [—yw(i—1)m0].
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Fig. 1. Desired directivity pattern.

5. OPTIMAL DESIGN

To find the optimal filter, in the MSE sense, for the desireddivity
pattern, it is important to minimize the MSE criterion givien(29)
subject to the distortionless constraint given in (4), i.e.

min MSE [h (w)] subject to h™ (w)d (w,0) = 1.

36
min (36)

We easily find that the optimal solution is

h, (w)

_ 1 —d"” (w,0) h, (w) 1

=hy (w) + a7 (,0) @5 (w)d (,0) 4 (w)d(w,0), (37)
where

h, (w) = ®;" (w) Pas (W) b (38)

is the unconstrained filter obtained by minimizingSE [h (w)].

6. SIMULATIONS

In this section, we carry out simulations to evaluate thefquer
mance of the proposed approach. We consider a linear artly wi
6 = 2.5 cm. In the rest, we would like to design the following
frequency-independent Chebyshev pattern:

Bz (6) = 0.3095 + 0.484 cos 6 + 0.2065 cos(26). (39)

This is equivalent to the second-order supercardioid paf6d:

B5 (6) = 0.103 + 0.484 cos 6 + 0.413 cos” 0. (40)
Figure 1 illustrates the desired directivity pattern [&9){. It should

be noticed that similar simulation results can be obtaimedther
patterns and orders.

In order to avoid numerical problems with the inver-
sion of ®4(w), we replace <I>;1 (w) in (37) and (38) by
[®a (w) + elar] ", wheree = 10712,

First, we derive the optimal design by setting the numberief m
crophones ta\/ = 3. The derived beampattern and SNR gains are
plotted in Figs. 2 and 3. We can see that the beampattern is sim
lar to the desired directivity pattern in that the desireghal at the



endfire direction is perfectly preserved while the signatsnf the
other directions are attenuated. We can also see that the ighier
than7 dB while the WNG is negative at low frequencies. Then, we
increase the number of microphones\fo= 5 and investigate its ef-
fect on the performance of the optimal design. The beanpedied
SNR gains are presented in Figs. 4 and 5. Comparing the patter
in Figs. 1, 2, and 4, we observe that, as the number of micrggho
increases, the designed beampattern gets closer to thedldsiec-
tivity pattern as it can be expected. Comparing the SNR gains
Figs. 3 and 5, we can see that increasing the number of micngsh
slightly improves the DF and makes it frequency independbert
degrades the WNG.

270°

Fig. 2.
1 kHz.
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Fig. 4. Designed beampatternM = 5, 6 = 2.5 cm, and f =
1 kHz.
12
10
—~~ 8-
g g
S
a
2t
@)
0
10
0.
-10f
20t
2 -30
= -0t
-50F
_60.
-70)
80 (b)
0 0.5 1 1.5 2 25 3 35 4
Frequency (kHz)
Fig. 5. SNR gains with the designed beampattern: (a) DF and (b)

WNG. M = 5andé = 2.5 cm.

was shown that we can approach the desired directivitypatteith
very high precision. Our next step is to extend these idedsrake
the proposed approach more robust to white noise ampliicdty
including, for example, some ideas from [11].

8. RELATION TO PRIOR WORK

Microphone arrays can be applied to speech enhancementsyn no
and reverberant environments [1], [2], [3]. In the desigrfiréd

Fig. 3. SNR gains with the designed beampattern: (a) DF and (bheamformers, the beampattern is a very important perfoceari-

WNG. M = 3andd = 2.5 cm.

7. CONCLUSIONS

In this paper, we focused on the design of beampatternsebain-
ble the DMA directivity patterns, which are almost frequgriic-

terion. Among the many types of microphone arrays, DMAs are
designed in such a way that their beampatterns obey somedesi
directivity patterns. In [4], [5], [6], [7], DMAs are constcted by
using simple delays and band-pass filters. In [8], [12], DNike
designed by passing the microphone outputs through a filidr w
some fundamental constraints on nulls. In this paper, wpqz®
another way to design DMA patterns, which is based on the MSE

dependent. We proposed an optimal design in the MSE sensé anctriterion.
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