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ABSTRACT

This paper proposes a new efficient multichannel nonnegative ma-
trix factorization (NMF) method. Recently, multichannel NMF
(MNMF) has been proposed as a means of solving the blind source
separation problem. This method estimates a mixing system of
sources and attempts to separate them in a blind fashion. However,
this method is strongly dependent on its initial values because there
are no constraints in the spatial models. To solve this problem, we
introduce a rank-1 spatial model into MNMF. The proposed method
estimates a demixing matrix while representing sources using NMF
bases and can be optimized by the update rules of independent vector
analysis and conventional single-channel NMF. Experimental results
show the efficacy of the proposed method in terms of robustness and
convergence speed.

Index Terms— blind source separation, nonnegative matrix fac-
torization, independent vector analysis, rank-1 spatial model

1. INTRODUCTION

Blind source separation (BSS) is a technique for separating specific
sources from a recorded sound without any information about the
recording environment, mixing system, or source locations. In a
determined or overdetermined situation (number of microphones
≥ number of sources), independent component analysis (ICA) [1]
is the method most commonly used to solve the BSS problem,
and many ICA-based techniques have been proposed [2]–[6]. On
the other hand, for an underdetermined situation (number of mi-
crophones < number of sources) including monaural recording,
nonnegative matrix factorization (NMF) [7] has received much at-
tention [8, 9]. BSS is generally used to solve speech separation
problems, but recently the use of BSS for music signals has also
become an active research area [10].

As a means of solving the permutation problem [11]–[13] in
time-frequency domain ICA, independent vector analysis (IVA) [14]
has been proposed. Such ICA-based methods assume independence
between the sources in order to estimate a demixing matrix. How-
ever, if the observed signal frequently contains co-occurring sources,
such as music signals, these methods cannot separate them with high
accuracy because the independence between the sources is weak-
ened.

In NMF-based methods, the decomposed bases (spectral pat-
terns) must be clustered so as to represent the specific sources. One
effective way of achieving this is to utilize a sample sound of the tar-
get signal [15, 16]. However, such supervision cannot be utilized in
BSS. To solve this problem, multichannel NMF (MNMF) has been

proposed [17]–[22]. In particular, MNMF methods [20]–[22] esti-
mate a mixing system of the sources via spatial covariance matrices,
which is utilized for source clustering.

In [17]–[19], an instantaneous mixture in the time domain is
assumed, and only the observed gain of each microphone is mod-
eled by extending NMF to nonnegative tensor factorization. For
a convolutive mixture, we must treat complex values in the time-
frequency domain. MNMF methods [20, 21] separately model the
mixing system (as spatial covariance matrices) and the sources (us-
ing the NMF representation). These methods can be considered
as a multichannel extension of NMF. Update rules based on the
expectation-maximization algorithm have been derived. In [22], a
unified MNMF scheme was proposed. This method employs Hermi-
tian positive definite covariance matrices to model both the spatial
and source components, and multiplicative update rules have been
derived. However, it was reported that the algorithms [20]–[22] were
sensitive to the initial values in source separation tasks.

In this paper, we propose a new efficient MNMF method with a
rank-1 spatial model. Instead of estimating the mixing system, the
proposed method estimates the demixing matrix while representing
the sources using NMF bases. In addition, the proposed method can
be optimized using the fast update rules of IVA and single-channel
NMF. This fact enabled us to reveal the relationship between IVA
and MNMF by analysis. The efficacy of the proposed method is
confirmed experimentally.

2. CONVENTIONAL METHODS

2.1. Formulation

Let the numbers of sources and microphones (channels) be N and
M, respectively. The multichannel source and the observed and sep-
arated signals in each time-frequency slot are described as

si j = (si j,1 · · · si j,N)t, (1)
xi j = (xi j,1 · · · xi j,M)t, (2)
yi j = (yi j,1 · · · yi j,N)t, (3)

where i = 1, . . . , I; j = 1, . . . , J; n = 1, . . . ,N; and m = 1, . . . ,M are
the integral indexes of the frequency bins, time frames, sources, and
channels, respectively, t denotes the vector transpose, and all the en-
tries of these vectors are complex values. When the window size
in a short-time Fourier transform (STFT) is sufficiently long com-
pared with the impulse responses, we can approximately represent
the observed signal as

xi j =Aisi j, (4)
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where Ai = (ai,1 · · ·ai,N) is an M×N mixing matrix and ai,n is the
steering vector for each source. In the determined situation (M=N),
we can define the demixing matrix Wi = (wi,1 · · ·wi,M)h, and the
separated signal is represented as

yi j =Wixi j, (5)

where h denotes the Hermitian transpose.

2.2. IVA

IVA is one of the techniques used to solve the permutation problem
[13] and can be applied only in the overdetermined situation (M ≥
N). For simplicity, let M be equal to N. In this method, we define
the source component as a vector that consists of all frequency bins,
given as

y j,m = (y1 j,m · · · yI j,m)t. (6)

IVA can be used to estimate the demixing matrix Wi by assuming
both independence between the sources (vectors) and a higher-order
correlation between the frequency bins in each source [14]. The cost
function of IVA is defined as follows:

QIVA(W ) =
∑

m
1
J
∑

jG(y j,m) −∑i log | detWi|, (7)

where J is the number of time frames and G(y j,m) is a contrast func-
tion. When y j,m obeys a probabilistic density function p(y j,m), the
contrast function G(y j,m) is given as − log p(y j,m). In IVA, G(y j,m)=
∥y j,m∥2 is often used [14], which assumes a spherical Laplace distri-
bution for the source prior, where ∥ · ∥2 denotes the L2 norm. For the
minimization of (7), fast and stable update rules, which are derived
by an auxiliary function technique, have been proposed [23].

2.3. MNMF

MNMF is a natural extension of simple NMF for multichannel sig-
nals [22]. This method can be applied even in the underdetermined
situation (M<N). The observed signal is represented as

Xi j = xi jx
h
i j, (8)

where Xi j is a Hermitian positive definite matrix of size M ×M.
The diagonal elements of Xi j represent real-valued powers observed
by the microphone, and the nondiagonal elements represent the
complex-valued correlations between the microphones. The decom-
position model of MNMF is expressed as

Xi j ≈ X̂i j =
∑

k
(∑

nHi,nznk
)

tikvk j, (9)

where k = 1, . . . ,K is the integral index of the spectral bases, and
Hi,n is an M×M Hermitian positive definite matrix, which comprises
the spatial covariance for each frequency i and source n. In addition,
znk ∈R[0, 1] is a latent variable that indicates whether the kth basis be-
longs to the nth source (znk=1) or not (znk=0) and satisfies

∑
n znk=1;

tik ∈ R≥0 and vk j ∈ R≥0 are the elements of the basis matrix T ∈ RI×K
≥0

and activation matrix V ∈RK×J
≥0 . Figure 1 shows a conceptual model

of MNMF. In BSS, the mixing and demixing systems are unknown.
MNMF decomposes the observed signal into T and V and simulta-
neously optimizes the spatial covariance matrices H that correspond
to each sources. Then, the sources are separated by associating these
variables T and V with H by using a cluster-indicator latent vari-
able Z ∈RN×K

≥0 . The cost function based on Itakura-Saito divergence
is defined as [22]

QMNMF =
∑

i, j

[
tr(Xi jX̂

−1
i j ) + log det X̂i j

]
, (10)
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Fig. 1. Conceptual model of MNMF (N=M=2).

where constant terms are omitted. Update rules to minimize (10)
have been derived by the auxiliary function technique [22].

3. PROPOSED METHOD

3.1. Motivation and strategy

The separation performance of IVA is degraded for music signals
because the independence between the sources is weakened by the
frequent co-occurrence. In addition, IVA assumes that all the fre-
quency bins have the same time-varying gains. Therefore, IVA is not
suitable for signals that have harmonic structures. MNMF has prob-
lems in terms of the convergence speed and its strong dependence on
its initial values. This is because a huge number of variables should
be optimized using only one cost function, and because there is no
constraint for optimizing the spatial covariance matrices H.

To solve these problems, we propose a new efficient MNMF
method that employs a rank-1 approximation for the spatial covari-
ance matrices H. In this approach, similarly to in IVA, we assume
the determined situation and the linear time-invariant mixing sys-
tem described by (4) to restrict the flexibility of the spatial model.
In addition, instead of estimating H, the proposed method estimates
the demixing matrix Wi while representing the sources using NMF
bases.

3.2. Derivation of cost function

If we assume that the mixing system shown in Fig. 1 is represented
by the mixing matrix Ai = (ai,1 · · ·ai,n) appearing in (4), the spatial
covariance matrix Hi,n can be approximated by a rank-1 matrix that
is an outer product of the steering vector ai,n as follows:

Hi,n = ai,na
h
i,n. (11)

To introduce the rank-1 approximation into MNMF, we substitute
(11) into (9) and reformulate X̂i j using the mixing matrix Ai as fol-
lows:

X̂i j =
∑

k

(∑
nai,na

h
i,nznk

)
tikvk j

=
∑

nai,na
h
i,n
∑

kznktikvk j

=AiDi jA
h
i , (12)

where

Di j = diag
(
di j,1, . . . , di j,N

)
, (13)

di j,n =
∑

kznktikvk j. (14)

By substituting (12) into the MNMF cost function (10), we obtain

Q =
∑

i, j

[
tr
(
xi jx

h
i j

(
Ah

i

)−1
D−1

i j A
−1
i

)
+ log detAiDi jA

h
i

]
. (15)
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Table 1. Music sources
ID Song Source (1/2/3)
1 bearlin-roads snip 85 99 acoustic guit main/bass/vocals
2 fort minor-remember the name snip 54 78 drums/violins synth/vocals
3 ultimate nz tour snip 43 61 guitar/synth/vocals

Reverberation 
time: 300 ms

2 m

Source 1

Source 2

2.83 cm

70

Source 3

2.83 cm

50

20

E2A impulse 
response from
RWCP database

Fig. 2. Recording conditions of room impulse response.

In the overdetermined situation (we let M equal N for simplicity), the
demixing matrix Wi exists and we can transform the variables, i.e.,
the observed signal xi j and the mixing matrix Ai, to the separated
signal yi j =Wixi j and the demixing matrix Wi =A

−1
i respectively,

as follows:

Q =
∑

i, j

[
tr
(
W −1

i yi jy
h
i j

(
W h

i

)−1
W h

i D−1
i j Wi

)
+ log (detAi)

(
det Di j

) (
detAh

i

)]
=
∑

i, j

[
tr
(
WiW

−1
i yi jy

h
i j

(
W h

i

)−1
W h

i D−1
i j

)
+ 2 log | detAi| + log det Di j

]
=
∑

i, j

[
tr
(
yi jy

h
i jD
−1
i j

)
− 2 log | detWi| +

∑
m log di j,m

]
=
∑

i, j

[∑
m
|yi j,m|2∑

k zmktikvk j
− 2 log | detWi| +

∑
m log

∑
kzmktikvk j

]
.

(16)

In the conventional MNMF, the separated signal is obtained by clus-
tering H, T , and V into specific sources using a latent variable Z.
The proposed method estimates the demixing matrix Wi to obtain
the separated signal yi j, where we approximately decompose yi j into
zmk, tik, and vk j in each iteration.

3.3. Relationship between IVA and MNMF

The first and second terms in the cost function (16) are equivalent
to the IVA cost function (7), and the first and third terms in (16) are
equivalent to a single-channel NMF cost function described as

QNMF =
∑

i, j

[ |yi j|2∑
l tilvl j

+ log
∑

ltilvl j

]
, (17)

where l = 1, . . . , L indicates the basis index. This fact reveals the
relationship between IVA and MNMF, namely, MNMF with a rank-
1 approximation, which assumes a linear time-invariant mixing
system in the time-frequency domain, is essentially equivalent to
IVA with a basis decomposition model. Therefore, the proposed
method can be considered as an intermediate model between IVA
and MNMF in terms of the degree of freedom. From the IVA
side, we introduced the basis decomposition model with NMF to
capture the actual spectral patterns, and from the MNMF side, an
approximation for the spatial model was introduced to make the
optimization more efficient. However, the source priors of IVA
and the proposed method are different. IVA generally assumes the
spherical Laplace distribution, which has the same variance for all
frequency bins, as the source prior by setting G(y j,m) = ∥y j,m∥2 in
(7). The proposed method with (16) assumes independent complex

Table 2. Experimental conditions
Sampling frequency Downsampled from 44.1 kHz to 16 kHz

FFT length 512 ms
Window shift 128 ms

Number of bases K Proposed method 1: L=30 (K=90)
MNMF+MWF and Proposed method 2: K=90

Number of iterations 200

Gaussian distributions in each time-frequency slot [24], similarly to
conventional MNMF.

3.4. Update rules

If we eliminate zmk in (16), the differentials ∂Q/∂tik and ∂Q/∂vk j be-
come identical to ∂QNMF/∂til and ∂QNMF/∂vl j, respectively. There-
fore, when zmk ∈ {0, 1} and all the sound sources are modeled by the
same number of bases L (namely, L×M=K), the update rules of til,m

and vl j,m are the same as those of single-channel NMF, i.e.,

til,m ← til,m

√√√√√∑
j |yi j,m|2vl j,m

(∑
l′ til′,mvl′j,m

)−2

∑
j vl j,m

(∑
l′ til′,mvl′j,m

)−1 , (18)

vl j,m ← vl j,m

√√√√√∑
i |yi j,m|2til,m

(∑
l′ til′,mvl′j,m

)−2

∑
i til,m

(∑
l′ til′,mvl′j,m

)−1 , (19)

ri j,m =
∑

ltil,mvl j,m, (20)

where ri j,m is an estimated variance of each source [24]. Alterna-
tively, if we employ a continuous-valued zmk to cluster the bases into
specific sources, we can derive the following update rules of zmk, tik,
and vk j by minimizing (16) by the auxiliary function technique;

zmk ← zmk

√√√√√∑
i, j |yi j,m|2tikvk j

(∑
k′ zmk′ tik′vk′j

)−2

∑
i, j tikvk j

(∑
k′ zmk′ tik′vk′j

)−1 , (21)

tik ← tik

√√√√√∑
j,m |yi j,m|2zmkvk j

(∑
k′ zmk′ tik′vk′j

)−2

∑
j,m zmkvk j

(∑
k′ zmk′ tik′vk′j

)−1 , (22)

vk j ← vk j

√√√√√∑
i,m |yi j,m|2zmktik

(∑
k′ zmk′ tik′vk′j

)−2

∑
i,m zmktik

(∑
k′ zmk′ tik′vk′j

)−1 , (23)

ri j,m =
∑

kzmktikvk j, (24)

where we calculate zmk← zmk/
∑

m′ zm′k to ensure
∑

m zmk = 1 at each
iteration.

The demixing matrix Wi can be optimized by the update rule of
IVA because the differentials ∂Q/∂Wi and ∂QIVA/∂Wi are equiva-
lent. Fast and stable update rules for IVA have been derived as [23]

Vi,m =
1
J
∑

j
1

ri j,m
xi jx

h
i j, (25)

wi,m ←
(
WiVi,m

)−1 em, (26)

wi,m ←wi,m

(
wh

i,mVi,mwi,m

)− 1
2 , (27)

yi j,m ←wh
i,mxi j, (28)

where em denotes the unit vector with the mth element equal to unity.
We estimate all the variables that minimize (16) by iterating

(18)–(20) or (21)–(24) and (25)–(28) alternately. Note that the scale
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Fig. 3. Average scores for ID1 data: (a) SDR improvement, (b) SIR
improvement, and (c) SAR.
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Fig. 4. Average scores for ID2 data: (a) SDR improvement, (b) SIR
improvement, and (c) SAR.
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Fig. 5. Average scores for ID3 data: (a) SDR improvement, (b) SIR
improvement, and (c) SAR.

ambiguity exists between Wi and ri j,m because both of them can de-
termine the scale. Therefore, the estimated variance ri j,m has a risk
of diverging. To avoid this problem, we normalize Wi and ri j,m at
each iteration. The signal scale can be restored by applying a back-
projection technique [12] after the optimization.

4. EXPERIMENT

4.1. Conditions

To confirm the efficacy of the proposed method, we conducted an
evaluation experiment using professional music signals. In this ex-
periment, we compared four methods, namely, IVA [23], MNMF
with a multichannel Wiener filter (referred to as MNMF+MWF)
[22], Proposed method 1 (update using (18)–(20) and (25)–(28)),
and Proposed method 2 (update using (21)–(24) and (25)–(28)). Pro-
posed method 1 models all the sources with the same fixed number
of bases, L. In Proposed method 2, we only set the total number
of bases, K, and the sources are flexibly modeled with the optimal
number of bases using the cluster-indicator Z. We used three musics
obtained from SiSEC [25] and selected three sources, as shown in
Table 1. In addition, the observed signal, which has three channels,
was created by convoluting the impulse response E2A (see Fig. 2)
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Fig. 6. Example of SDR convergence: result for Source 1 in ID3.

Table 3. Computational times for separation of ID1 (s)
IVA MNMF+MWF Proposed method 1 Proposed method 2
91.6 4498.4 121.0 173.4

from RWCP database [26] with each source. The other experimen-
tal conditions are described in Table 2. As the evaluation scores, we
used the signal-to-distortion ratio (SDR), source-to-interference ra-
tio (SIR), and sources-to-artifacts ratio (SAR) defined in [27]. SDR
indicates the total separation performance, SIR indicates the degree
of separation, and SAR indicates the absence of artificial distortion.

4.2. Results

Figures 3–5 show the average scores and their deviations in 10 tri-
als with various initializations. From these results, we confirm that
IVA cannot achieve satisfactory separation because this method is
not suitable for music signals. MNMF+MWF gives slightly better
performance than IVA, and its maximum scores are comparable to
the average scores of the proposed methods. However, owing to the
lack of robustness, the error bars are relatively large. The proposed
methods achieve good and stable performance, which is particularly
evident in Figs. 4 and 5. This is because (a) the spectral patterns are
effectively modeled by the decomposition of bases compared with
IVA, and (b) the optimization of the demixing matrix using the IVA
update rules results in a stable separation performance.

Figure 6 shows an example of SDR convergence for each
method. Both IVA and the proposed methods show much faster
convergence and better results than MNMF+MWF. The actual com-
putational times in this experiment are shown in Table 3, where the
calculations were performed using MATLAB 8.3 (64-bit) with an
Intel Core i7-4790 (3.60 GHz) CPU. The computational times of the
proposed methods are less than twice that of IVA. MNMF requires a
longer computational time because of the eigenvalue decomposition
for each Hi,n.

5. CONCLUSION

This paper presents an efficient MNMF method that includes a rank-
1 approximation of the covariance matrix. The proposed method can
be optimized using the fast update rules of IVA and single-channel
NMF. Also, we revealed that MNMF with the rank-1 approximation
is essentially equivalent to IVA with the basis decomposition model.
The experimental results show that the proposed method achieves
faster convergence and better results than the conventional methods.
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