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ABSTRACT

Repetition is a fundamental element in generating and per-
ceiving structure in audio. Especially in music, structures
tend to be composed of patterns that repeat through time (e.g.,
rhythmic elements in a musical accompaniment), and also fre-
quency (e.g., different notes of the same instrument). The
auditory system has the remarkable ability to parse such pat-
terns by identifying repetitions within the audio mixture. On
this basis, we propose a simple user interface system for re-
covering patterns repeating in time and frequency in mixtures
of sounds. A user selects a region in the log-frequency spec-
trogram of an audio recording from which she/he wishes to
recover a repeating pattern masked by an undesired element
(e.g., a note masked by a cough). The selected region is then
cross-correlated with the spectrogram to identify similar re-
gions where the underlying pattern repeats. The identified
regions are finally averaged over their repetitions and the re-
peating pattern is recovered.

Index Terms— Constant Q Transform, normalized 2-d
cross-correlation, median filter, audio source separation

1. INTRODUCTION

Audio editors have come a long way by letting everyday users
manipulate their favorite recordings in a number of ways.
However, they still lack tools to allow for the separation of
sounds, a valuable means that would help for applications
such as audio restoration, song remixing, or noise reduction.

A few researchers have proposed user interface systems
which can allow a user to edit an image of an audio recording
(typically, a spectrogram) in order to perform source separa-
tion, relying on methods such as a pitch detection algorithm or
Non-negative Matrix Factorization (NMF) [1–3]. However,
such systems still depend on heavy and intricate manual an-
notations from the user, which would be tiresome and distract
the user from the creative function of such tools.

Recently, a number of researchers have demonstrated the
importance of repetition for audio structure analysis, and de-
veloped simple and efficient methods for audio source sep-
aration [4–9]. Their approach is supported by recent find-

ings in cognitive psychology that showed that human listen-
ers also use repetition as a cue to identify and separate a same
sound that repeats through different mixtures, even without
prior knowledge of the sounds or the mixing process [10].

On this basis, we propose a simple user interface system
for recovering patterns repeating in time and frequency in
mixtures of sounds. The idea is to leverage repetition to per-
form source separation, by allowing a user to select a rough
region from which she/he wishes to recover a pattern and let-
ting the system figure out what the pattern of interest should
be. This leads to a more intuitive system that requires only a
minimum input from a user, so she/he can still enjoy manipu-
lating her/his favorite audio recordings.

The rest of the article is organized as follows. In Section
2, we present our system. In Section 3, we list few applica-
tions. In Section 4, we conclude this article.

2. SYSTEM

2.1. Constant Q Transform

The system first transforms an audio recording into a time-
frequency representation known as the spectrogram. Instead
of the usual Fourier transform, we chose to use the Constant Q
Transform (CQT) [11, 12], as the CQT has a logarithmic fre-
quency resolution, mirroring the human auditory system and
matching the notes of the Western music scale, so that pitch
variations conveniently correspond to frequency translations.

We used a recently proposed CQT toolbox1 which fea-
tures a very welcome inverse transform that gives an effi-
cient reconstruction [13]. We use the default parameters, i.e.,
a number of 24 frequency bins per octave, a minimum fre-
quency of 27.50 Hz (corresponding to the note A0), and a
maximum frequency of half the sampling frequency.

2.2. Normalized 2-D Cross-Correlation

Once the CQT is computed, the system presents its corre-
sponding magnitude spectrogram to the user in the form of
a simple interface. The user then selects a region from which

1http://www.cs.tut.fi/sgn/arg/CQT/
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she/he wishes to recover a repeating pattern masked by an un-
desired element (e.g., a note masked by a cough).

The system then cross-correlates the selected region with
the spectrogram in order to identify similar regions at differ-
ent times and/or frequencies, where the underlying pattern re-
peats. We used the normalized 2d cross-correlation to mea-
sure similarities between the selected region and the rest of
the spectrogram, as it is typically used in image processing
to find templates in an image [14, 15]. Equation 1 shows the
computation of the normalized 2-d cross-correlation.

C(i, j) =

∑
x,y

(S(i−1+x, j−1+y)−Si,j)(R(x, y)−R)

(
∑
x,y

(S(i−1+x, j−1+y)−Si,j)2
∑
x,y

(R(x, y)−R)2)
1
2

• S is the log-spectrogram and Si,j is the mean of S under R

• R is the selected region and R is the mean of R
• i = 1 . . .n, n is the number of frequency channels in S

• j = 1 . . .m, m is the number of time frames in S

• x = 1 . . .h, h is the frequency height in R

• y = 1 . . .w, w is the time width in R

(1)

The system then identifies in the normalized 2d cross-
correlation, peaks that correspond to time and frequency
indices of regions in the spectrogram that are similar to the
selected region. We define the following parameters for
the peak picking: the maximum number of repetitions (i.e.,
peaks) and the minimum time and frequency differences
between similar regions (i.e., adjacent peaks).

2.3. Median Filter

Once the time and frequency indices of the similar regions are
identified, the system computes the median between all the
similar regions, for all the time-frequency bins. This helps to
recover the repeating pattern by removing outliers, provided
that the pattern of interest repeats sufficiently, and that the
undesired element does not repeat as much [4–9].

The system then takes the minimum between the result-
ing filtered region and the original selected region, for all the
time-frequency bins. This is to ensure that the former one
does not have oddly more energy than the latter one. Equa-
tion 2 shows the computation of the final filtered region.

P (x, y) = min{median
k=1...p

{S(I(k)−1+x, J(k)−1+y)}, R(x, y)}

• I is the vector of the time indices of the repetitions
• J is the vector of the frequency indices of the repetitions
• k = 1 . . .p, p is the number of repetitions

(2)

The approach has support in cognitive psychology, where
it was shown that human listeners also use repetition as a cue

to identify and separate a same sound that repeats through dif-
ferent mixtures, even without prior knowledge of the sounds
or the mixing process [10]. The approach has also parallels
in image processing with non-local means, an algorithm typ-
ically used for image denoising [16].

The system finally adds the phase of the original CQT to
the magnitude spectrogram with the final filtered region, and
inverts the result back to the time-domain where the undesired
element has been removed. Figure 1 shows an overview of the
system.

Fig. 1. Overview of the system. (1) An audio recording
with an undesired element is transformed into a log-frequency
spectrogram. (2) The user selects the region of the unde-
sired element in the spectrogram. (3) The selected region is
cross-correlated with the spectrogram to identify similar re-
gions where the underlying pattern repeats. (4) The identified
regions are averaged over their repetitions and the repeating
pattern is recovered. (5) The filtered spectrogram is inverted
back to the time-domain with the undesired element removed.

3. APPLICATIONS

Instead of a large-scale evaluation, we propose to list real-
world applications and provide concrete visual and audio ex-
amples, along with performance measures (the reader will
find the audio examples online2).

3.1. Recovering a Melody Masked by a Cough

Figure 2 shows the log-spectrogram of a piano melody with a
cough masking the first note. A user selected the region of the
cough (solid line) and the system identified similar regions
where the underlying note repeats (dashed lines). Note that
the note not only repeats at different times, but also at differ-
ent frequencies. We used a maximum number of 5 repetitions
and minimum time and frequency differences of 1 second and
1 semitone between similar regions.

Figure 3 shows the log-spectrogram of the same piano
melody with the first note recovered. The system averaged
the identified regions over their repetitions and filtered out the

2http://www.zafarrafii.com/repet.html
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Fig. 2. Log-spectrogram of a melody with a cough masking
the first note. The user selected the region of the cough (solid
line) and the system identified similar regions where the un-
derlying note repeats (dashed lines).

cough from the selected region. In practice, the whole pro-
cess only takes a fraction of a second, as the system involves
efficient algorithms (fast CQT [12] and fast normalized 2-d
cross-correlation [15]) and simple operations (peak picking
and median filtering).

Fig. 3. Log-spectrogram of the melody with the first note
recovered. The system averaged the identified regions over
their repetitions and filtered out the cough from the selected
region.

Table 1 shows the separation performance for the recov-
ered note, and the extracted cough (in dB). We used the BSS
Eval toolbox3 which features the Source-to-Distortion Ratio
(SDR) which measures the overall separation performance,
with the Source-to-Interference Ratio (SIR) which measures
the degree of separation between the sources and the Source-
to-Artifacts Ratio (SAR) which measures the quality of the
separation of the estimates [17]. The values shown are typi-

3http://bass-db.gforge.inria.fr/bss_eval/

cally considered high, which implies good separation perfor-
mance. The audio files were downloaded from Freesound4.

SDR SIR SAR
recovered note 8.70 13.44 13.56
extracted cough 5.91 6.55 11.90

Table 1. Separation performance for the recovered note, and
the extracted cough (in dB).

3.2. Recovering an Accompaniment Masked by Vocals

Figure 4 shows the log-spectrogram of a song excerpt with
female vocals masking a guitar accompaniment. The user se-
lected the region of the first measure (solid line) and the sys-
tem identified similar regions where the underlying accompa-
niment repeats (dashed lines). Note that the accompaniment
repeats at periodic times, and stays at the same frequency.
Here, we used a maximum number of 7 repetitions.

Fig. 4. Log-spectrogram of a song with vocals masking an
accompaniment. The user selected the region of the first
measure (solid line) and the system identified similar regions
where the underlying accompaniment repeats (dashed lines).

Figure 5 shows the log-spectrogram of the same song ex-
cerpt with the first measure of the accompaniment recovered.
The system averaged the identified regions over their repeti-
tions and filtered out the vocals from the selected region.

Table 2 shows the separation performance for the recov-
ered accompaniment, and the extracted vocals (in dB). The
audio files were downloaded from SiSEC5.

3.3. Extracting a Speech Masking a Noise

Figure 6 shows the log-spectrogram of a male speech mask-
ing an alarm noise. The user selected the region of the first

4https://www.freesound.org/
5https://sisec.wiki.irisa.fr/tiki-index.php
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Fig. 5. Log-spectrogram of the song with the first measure
of the accompaniment recovered. The system averaged the
identified regions over their repetitions and filtered out the
vocals from the selected region.

SDR SIR SAR
recovered accompaniment 9.01 10.71 14.34

extracted vocals 10.77 24.95 14.32

Table 2. Separation performance for the recovered accompa-
niment, and the extracted vocals (in dB).

sentence (solid line) and the system identified similar regions
where the underlying noise repeats (dashed lines). Here, we
used a maximum number of 5 repetitions.

Figure 7 shows the log-spectrogram of the same male
speech with the first sentence extracted. The system averaged
the identified regions over their repetitions and extracted the
speech from the selected region. Note that, here, we recov-
ered the non-repeating pattern (i.e., the speech) instead of the
repeating pattern (i.e., the noise).

Table 3 shows the separation performance for the ex-
tracted speech, and the filtered noise (in dB). The audio files
were downloaded from Freesound.

SDR SIR SAR
extracted speech 6.01 15.64 7.83

filtered noise 9.28 10.31 15.44

Table 3. Separation performance measures for the extracted
speech, and the filtered noise (in dB).

4. CONCLUSION

We have proposed a simple user interface system for recov-
ering patterns repeating in time and frequency in mixtures of
sounds. Applications include recovering a melody masked
by a cough, an accompaniment masked by vocals, or even a
speech masking a noise.

Fig. 6. Log-spectrogram of a speech masking a noise. The
user selected the region of the first sentence (solid line) and
the system identified similar regions where the underlying
noise repeats (dashed lines).

Fig. 7. Log-spectrogram of the first sentence of the speech
extracted. The system averaged the identified regions over
their repetitions and extracted the speech from the selected
region.

There is a number of directions in which we would like
to take this work. First, we would like to develop a func-
tional graphical user interface for everyday users to easily and
rapidly manipulate their favorite audio recordings. Then, we
would like to extend the method for recovering multiple re-
peating patterns within a same region, by identifying multiple
modes between similar regions. Finally, we would like to in-
corporate the use of other criteria in addition to repetition,
as cognitive psychology has shown that listeners use differ-
ent cues for auditory scene analysis [18], and recent works in
audio source separation have demonstrated the advantage of
modeling individual sources through their inherent regulari-
ties within the mixture [19, 20]. This work was supported in
part by National Science Foundation Award 1420971.
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