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ABSTRACT nificant improvement compared with previous unsupervised algo-

i . . L ithms. Jaiswal et al. in [9] applied a constant Q transform on
Non-negative matrix factorization (NMF) based sound source sep and used shifted-NMF to separate harmonic instruments from

ration involves two phases: First, the signal spectrum is decompos . . . .
P 9 P P e mixture. This method is based on western music theory and

into components which, in a second step, are clustered in order to op- Id demonstrat nsiderably better lity than [71. In'[10
tain estimates of the source signal spectra. The major challenge wi could demonstrate considerably better quality tha [7]. [ ],
some efforts have been made to avoid the clustering step by intro-

this approach is the accuracy of the clustering algorithm in the se ucing group sparsity into the NME separation procedure. However,

ond step, especially as most previously used clustering algorith %is method only works well if the overlapping of sources is less
are focusing on the frequency part of NMF only and, hence, are mis han roughly66%, which is often not true for realistic applications.

ing the information of the time activation matrix. In this paper, we nother roach is [111. which combines information from the fr
propose a novel clustering criterion which combines the frequencg‘ other approach is [11], which co es information from the fre-

and time activation part of NMF. It is based on the linear predictive uency ba§is and time activation matrices assuming t_hat sources are
coding compression error and we show that it allows a good clustet- onoph(_)nlc. The_y showed a good_ performa’nce on simple test files
ing of the NMF components while at the same time can be efficientl ut the time Q|510|ntness assumption doesn't usually hc_>|d for real
computed. Our new clustering criterion shows an overall improve orld cases, i.e., for polyphonic sources, and hence this approach

performance compared with the current state-of-the-art clusteFing a alls for such mixtures.

gorithms as we experiment on the TRIOS dataset. Therefore, we propose in this paper a new clustering criterion
which has the advantage that it not only takes into account the fre-

guency basis vectore/;, but also the learned time activation pat-
ternsh; by performing the clustering in the time domain. We will
1. INTRODUCTION give an algorithm that minimizes thiagar predictive codindLPC)
compression error of the source estimates as we can expect that a
Instantaneous, single-chanr®ind source separatioBSS) deals  clustering where each estimate only contains one source can be com-
with the problem of obtaining// estimatess;(n),i = 1,...,M  pressed more than a clustering where estimates contain interference
of the M source signalss;(n) if only a linear mixturez(n) =  from other sources. Using this new clustering produces improved
Zf‘il si(n) of them is given [1, 2]. One application for BSS is the source separation results compared to the current state-of-the-art a
separation of music into the individual instrument tracks such thagorithms aforementioned.

an upmixing of the original content is possible [3, 4]. _ The remainder of this paper is organized as follows: First, we
In this paper, we will use single-channel BSS usingn-  yeyiew in Sec. 2 the NMF approach for single-channel BSS. Then,

negative matrix factorizatiofNMF) as shown in Fig. 1. Such gsec. 3 motivates our compression error criterion and in Sec. 4 we

an approach usually consists of the following steps [5-7]: Aftersnow that we can efficiently compute it and use it for clustering. Fi-

the transformation of the mixture(n) into the time-frequency najly, Sec. 5 gives results on the TRIOS dataset before we conclude
domain using ashort-time Fourier transform(STFT), we apply  this'paper in Sec. 6.

NMF to its magnitude spectrum in order to obtdirfrequency ba-

?E VeCtOLs{yuhiéﬁVzVLe } c?annd SLUﬁqorggﬁggr}ﬂ'Qﬁea?rtéval}g):cver%tg{rsix a column vector an&X a matrix where in particulak is the identity
Wl’ : 'R}XLL d activati S € REYE wh qF d Y matrix. The matrix transpose and Euclidean norm are denoted by
€ R, "™ and activation matrbdl € Ry"" where" denotes ()T gnq|| | respectively. Furthermor&.+Y denotes the element-

the number of frequency bins ard the number of time frames. wise (Hadamard) product & with Y andX-"2 the element-wise
We will refer to the pair{w;, h;} asith NMF component. Using ( )P

a suitable clustering, the > M components are grouped inid

clusters such that we can compute Wiener filter softmasks and use

an inverse STFT to obtain the estimate&n),i = 1,..., M. 2. SINGLE-CHANNEL NMF BASED BSS
Of these steps, the clustering is the most critical one as we on

obtain good source separation results, if we can find a good grou

ing of the component$w,, h; }. Traditionally, the clustering is ei-

Index Terms— Non-negative matrix factorization (NMF), Lin-
ear predictive coding (LPC), Blind source separation (BSS)

The following notation is used throughout this papedenotes

squaring ofX.

I
313 the following, we will review the basic steps for single-channel
NMF based source separation which are also shown in Fig. 1. Let

ther manually done or the original sources are used as referenck(®) € R withn = 1,..., N denote a mixture signal which is
for instance in [6, 8]. In [7], Spiertz and Gnann proposed a sourceSOMPosed of\/ source signals (n), ..., sar(n), i.e., we have
filter based method for blind clustering % with either kmeans M

or a second NMF, wher8V is additionally transformed intel- z(n) = Z s:(n). 1)

frequency cepstral coefficienfMFCC). Their results showed sig- p
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Fig. 1: Single-channel BSS using NMF with clustering in the frequency domain
Such signals can be observed in many fields and the task of BSStisne components; (n), ..., cr(n) with
to recover estimates, (n), ..., $u(n) of the source signals if only 2
the mixture signak:(n) is available. We will now give details for (wihf)
each step: a(n) =ISTFT == — S (3)
> (wihi):

(a) Time-Frequency representatiomn order to use NMF, we first

compute the STFT of the mixture signa(n) and we obtain the wherew;, h; are thelth column and row ofW and H, respec-
spectrogrant(f, k) = STFT{z(n)} wheref = 1,..., F denotes tively. In order to solve the source separation problem, we now
the frequency bin index and = 1,..., K the frame index. We need to group thesk signals intoM clustersCy, ..., Cys such that
can conveniently summarize the STFTadh) in matrix notationas ~ 3;(n) = 3-,... ai(n) is a good estimate of théh source signal

S = X.4P € C"*¥ whereX € R{*¥ andP € C"** denote  s,(n). In this paper, we propose to use the compressibility of the
the magnitude and phase spectrogram, respectively. signalss;(n) in order to find a good clustering as our assumption

(b) Non-negative matrix factorizationAssuming that each source IS that we can compress an estimated source sigta) better if it
has a characteristic frequency spectrum which can be expressed b§Rly contains components from one source and, hence, our task is
small number of frequency basis vectors, we can use NMF to extra® find the clustering’, ..., Ca which results in source estimates
them. As we apply NMF to the magnitude spectrogiimwe use 31(n),...,8m(n) that can be most compressed. The compression
theKullback-Leibler(KL) divergence as cost function, see for exam- Method that we want to uselisear predictive codindLPC) which

ple [12], and we obtain two non-negative matridds foL and  we will outline in _the following: In_order to see how much we can
Hc RixK with X ~ WH. Additionally, temporal continuity is compress an estimated source sighidh), we compute the LPC

enforced as proposed in [6] to obtain a NMF decomposition whictf" 0" . R
prop [6] P ei(n) = 8i(n) — (hs; * 8) (n), 4

is beneficial for the source separation. ' _
¢) Clustering: Using a suitable clustering method, efgneans on Wherehs, (n) denotes the causal impulse response of the optimal
(©) ° J J A LPC filter of lengthP for the signals;(n) with hg, (0) = 0 such

the columns of the frequency basis maf¥&, we obtain}M clusters 9 4 2 .
ate;(n) has minimum energy, i.e., at time instanceve can view

Ci1,...,Cum. Please see Sec. 1 for an overview of clustering method . . ; .
that have been proposed so far. Ahgqy *§;) (n) asan optimal estimate 6f(n) given the past samples
- , 3i(n —1),...,8(n — P) ande;(n) is the difference between the

(d) Sourpe recpns@ructlonFlnaIIy, the source signals are found by adicted valudhs, x §;)(n) and the true valug; (). Combining

using Wiener filtering to get source spectrogram estimates and aﬁie LPC errors:;(n) for all sources, we can compute the overall

plying an inverse STFT to them, .., we compute error signak(n) = Zf‘il e;(n) and, in order to solve the clustering
hTY)A2 problem, we are looking for the clusterigg, . . ., Cas such that the

Zzgci (wihy) }

§i(n) =ISTFT =1~ & (2)  energy ofe(n) is minimized, i.e., we want to solve
{ Zf:1(wlth)'A2

N
foralli = 1,..., M. Due to the Wiener filtering, we know tHat o, min e(n)? (5)
s 1rCar 4=
(n) = ¥, 5i(n). n=1
Of these steps, the clustering s{gpis the most important one ith
as single-channel NMF based BSS will only work if we can find a
good clustering of the NMF components. In the following, we will M M
introduce a new clustering criterion which has the advantage that it e(n) => ei(n)=> (8i(n) — (hs;, x 3:)(n))
improves the source separation results compared to the current state- i=1 i=1
of-the-art methods. M
=a(n) = Y (hs, * 3:)(n). (6)

3. LPC ERROR CLUSTERING CRITERION

3.1. Definition and Motivation
The clustering criterion that we want to propose is computed in th
time domain and, therefore, we first use Wiener filtering to obfain

i=1

£rom (6), we can see that we subtract from the mixture sig(a)

all those parts that we can “explain” by LPC and, hence, finding

a clustering with minimum energy"""_, e(n)? should result in a
INote that we neglect here and in the following any artifase may be ~ good source separation as we will also demonstrate in Sec. 5.

due to the inverse STFT reconstruction [13].
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3.2. Computation of the optimal LPC filter As this iterative approach is only performing a local optimization,
In the following, we will briefly review linear predictive coding, i.€., we can not guarantee that we have converged to the clustering
please refer to [14] for a more detailed discussion. In linear prewith the smallest LPC error, we have observed that we can further
dictive coding, we want to predict the samglgn) given the last? improve the source separation results by restarting the iterative al-
samples of it, i.e., we want to minimize the energy of the residuaporithm several times with different initial clustering constellations

ei(n) where and merging their results in an additional fourth step:
_ o4 2 _ 4.) Repeat Step 1.) - 3.) with different initial clusterings. Compute
i(n) = &i(n) — (hs, x3:)(n), n=1,..., N, 7 ) b
ei(n) = 8i(n) = (hs, x 8:)(n), n ) from the clustering results a similarity mati@ € R*** where
andhg, (n) # 0 only for 1 < n < P. For convenience, we will use the (11, I2)th element gives the probability that theh andlath
the following matrix notation: Let; = [e;(1) - e;:(3)]7 € RN, component are in the same cluster and knmedoids onQ to
§ =[50 5|7 € RY andhg, = [hs;() - ke, (P)]T € RP output a final clustering.
denote the error, estimated source signal and LPC impulse resportsge kmedoids algorithm that we use here is a basigtitioning
for theith source, respectively. Then, we can write (7) as around medoid$PAM) algorithm, see [16].
ei = 8; — S;hy, (8)  4.2. Efficient computation of the LPC Error
oA NxP As the LPC error (12) needs to be computktf® times in each
with S; € R iteration, it is important to efficiently compute it. This is possible as
0 0 0 we can exploit the fact that all source estimaig:) are computed
3(1) 0 o 0 from the L componentg; (n).
g _ 5(2) 3:(1) 0 ) From (11), we see_that we _uAseAthe (cross-)correlation vetss
o and (auto-)correlation matri$7 S; to compute the error energy

: lei|[>. Computing both quantities requires eith@(N P) oper-
3(N—-1) 8(N-2) -+ 5(N-P) ations if it is computed directly 0O(N log(N)) operations if
computed via thdast Fourier transform(FFT), which might be

and it is well known that the optimal prediction filter that minimizes g|gw if the signal lengthV is large. HoweverS7s; andS7S; can

y oW
[les||” is given by (see [15]) be efficiently computed as we know thia(n) can be expressed as
hs, = (S87S:)7"'STs.. (10) 8i(n) = Xiec, a(n) and, hence,
Plugging this into (8), we see that the resideals given by SHEE Z Z C;‘F]cl% 7S = Z Z C;‘FICLQ, 13)
I R 11€C; l12€C; 11€C; l2€C;
e =8, —Si(878,)"'STs, (11) )

o whereC; € RV*” has the same Toeplitz structure 8sin (9)

andthe overallerrorie = 3° e; = x—3"17, 8;(87S:)7'S7s;  and is composed of (n) such thatS; = Yice, Crande; =

wherex = 3" 3, is the vector representation of the mixture sig- (1) e(N)]™ € RN is the vector representation of tté

. T L
nal,i.e.x = [z(1) --- @(N)]" € RY.Theoverallerroe has  time component. If we precompute the producc;, € R” and

the energy, i.e., squarégknorm ClCy, e RP*Fforall1 < ly,1> < L then we can quickly eval-

uate (13) at each iteration. Thus, the computatioa,;dh (11) only

M
lel|> = [Ix]|” — 2> " x"8:(878:,)"'8]s consists of solving the linear system of equati®sS;hs, = S7's;
i—1 which can be done efficiently & is small, e.g.P = 10 in Sec. 5.
M M
+ 3D aT8.(878:)18TS;(878,) 8T8, (12) > RESULTS

In the following, we will compare our proposed algorithm with the
MFCC-based methods from [7] and shifted-NMF clustering from
In order to find a good source separation result, we want to clustdP]. We will use the same pre-training procedure as mentioned in

i=1 j=1

c1(n), ..., cr(n) such thatle||? is minimized. [17]: For every source;(n), we run the regular KL-NMF algorithm
separately which yields each tinig different frequency and activa-
4. PROPOSED CLUSTERING APPROACH tion vectors. Then, we concatenate the found frequency basis vectors
4.1. Outline of the Method for all M sources such that we obtain the pre-trained frequency ma-

) . N . - trix W € RE*F with L = Ly +- - -+ L. Finally, we run KL-NMF

We \(wll now describe an iterative algorlthm that we can use for m'n'again on thé mixture signai(n) where we keepW fixed and only

imizing the error energy (12). In each iteratid,components are date the activation matrid. This procedure has the advantage

randomly chosen gnd they are assigned to the plusters Sl.JCh that t we know the ground truth of the clustering and, hence, we can

%ﬁg\r’\/?nng[ﬁ?eg;)e'ss,smalIeSt' Hence, the algorithm consists of thglso give th_e performance_ o_f an oracle system that can conduc—_t aper
' fect clustering. However, it is important to note that this pre-training

1.) Randomly generate an initial clusteri@ig .. .,Cas. step is only done for the sake of having an oracle clustering and the

_ . proposed compression error clustering can also be used if the NMF
2.) ChooseR (for exampleR = 2) arbitrary components and com- is learned from the mixture only.

pute for all M possible clustering assignments the compres- The d h f . is th h
sion error. Assign the? components to the clusters such that € dataset that we use for our experiment Is the same as the
S one that was used in [18]: it includes the whole TRIOS dataset [19]
(12) is minimized. . o ; S
with several music mixtures of multiple harmonic instruments, the
3.) Repeat Step 2: For each epoch go through all possible subséBach” quartet from Bach 10 dataset [20], and the “MIREX” quintet
of size R until the clustering is stable. extracted from MIREX 2007 dataset which was also used in [21]. All
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Recordin Instrument Oracle clustering Proposed method MFCC kmeans [7] Mel NMF [7] Shifted-NMF [9]
9 SDR SIR SAR | SDR SIR SAR | SDR SIR SAR | SDR SIR SAR | SDR SIR SAR

Horn 7.20 9.94 1091 7.07 13.86 8.27| 3.87 5.76 941 4.17 583 10.17| 2.95 334 15.20

Brahms Piano 5.73 8.48 9.59| 0.64 1.04 13.63| 3.30 442 10.76| —0.10 0.21 1439 3.78 5.59 9.50
Violin 10.14 19.24 10.76] 10.14 1924 10.76|—-8.35 —7.89 10.21| 9.69 19.79 10.19] 7.66 1096 10.74

Bassoon 8.08 11.76 10.79] 8.08 11.76 10.79| 1.85 11.67 2.61] 0.15 0.75 11.72| —0.83 —0.60 1543

Lussier Piano 715 10.93 9.83| 7.15 10.93 9.83| 4.66 6.28 10.64| 4.56 8.00 7.83| 254 5.14 7.16

Trumpet 1010 16.87 11.22| 1010 16.87 11.22|-1.73 —-129 12.18| 846 18.12 9.05| 6.57 7.39 1495
Clarinet 14.44 2299 1591 1444 2299 1591| 13.82 23.37 14.35 13.82 23.37 1435 10.62 11.78 17.18

Mozart Piano 9.02 5.85 11.37| 9.02 585 11.37| -3.80 —-3.51 13.21| 5.12 6.58 11.43| 4.40 5.25 13.03
Viola 2.62 1444 5.31] 2.62 14.44 5.31| —4.83 —-3.80 7.28| —8.25 —7.92 11.66| 241 6.55 5.39
Cello 7.01 16.26 7.66| 7.01 16.26 7.66| —6.48 —6.04 10.70| —7.57 —7.08 9.97 | —0.09 041 12.34
Schubert Piano 10.64 14.67 1298 10.64 14.67 1298 8.85 17.92 9.49| 4.05 5.84 9.77| 4.44 5.06 14.35
Violin 6.38 10.27 9.05| 6.38 10.27 9.05| -2.34 -1.61 9.60 0.33 1.64 8.42| —1.39 —0.46 9.02

Bassoon 5.15 8.31 8.62|-15.95 —15.09 6.73| 3.72 5.96 8.64 | 0.63 1.64 9.73| —0.44 0.35 10.15
Clarinet 5.29 7.84 9.47| —0.69 0.01 1057 270 411 9.72| 0.25 1.87 749 1.10 202 1042

Bach Saxophone | 5.81 11.26  7.58| 581 1126 7.58|—055 049 893| —125 —048 9.95| 3.16 452 10.17
violin 779 1413 910/ 862 1573 967| 574 815 10.08| 7.13 1393 832| 419 579 1031

Kick 1238 2001 13.08-1153 —519 —4.04 | 1238 20901 13.08| 12.38 2091 13.08| 1114 16.14 12.89

Piano 406 679 819 -097 -033 1082| 283 637 628|-135 —083 1153 266 430 9.7

Take Five Ride 567 1259  6.89| 567 1259  6.89|-32.39 —30.38  2.31|-048 1256 —0.02 | —2.63 —1.23  6.64
Saxophone | 9.47 17.72 10.25| 7.66 16569 8.34| 6.84 1812 7.24| 539 1953 560 826 10.78 12.17

Snare | —0.08 911 098 141 1182 210| 182 1196 254|156 170  3.47|-2421 —2320  5.89

Bassoon | 7.74 1492 881 7.74 1492 881| 149 365 7.12| 1.20 340 683 035 123 10.19

Clarinet 6.54 9.43 10.14|-1.35 —0.62 10.12| 1.85 2095 10.12|-1.04 -043 11.01| 154 219 12.16

MIREX Flute 9.76 1602 11.05/ 1007 18.88 10.74| 471 579 1230 750 10.36 11.05| 6.30 695 1563
Horn 561 1018 7.87| 193 550 552|-079 200 458|-069 215 457| 168 264 1061

Oboe |-622 —443 4261297 —1254 10.05|-8.86 —818 8.30|-10.89 —10.62 12.27| -923 -830  6.82

Table 1: Single-channel NMF separation results for the TRIOS dataset, alls/aheegiven in dB

music files are down-sampled 16 kHz to speed up our method and the proposed algorithm is only worse than the Mel NMF method.
the BSS Eval toolbox is utilized to evaluate the obtained source seprhe reason why it fails to work fine for “Take Five” is that there are
aration results, see [22]. Furthermore, we use the following experitwo percussive sources, i.e., “Kick” and “Snare”, which are nell w
mental settings: The magnitude spectrogram of the mixture signal isuited for the LPC compression error and we are therefore planning
obtained using a STFT with a 75% overlapping Hamming windowto extend our method, see Sec. 6.
and a window length of siz€096. For the pre-training, each source The advantage of our proposed clustering method lies in the
is separated intd.; = 5 components such that the overall number combination of frequency and time information. A good example
of components i, = 5M. of this advantage can be seen for “Schubert”. It consists of three
The obtained source separation results are summarized in Tgources (cello, piano and violin) where the cello and the violin have
ble 1 where we compare the following approaches: similar frequency basis vectors and, hence, the other three algo-
e “Oracle clustering”: The clustering is done according to the rithms fail to separate these two sources. However, the time acti-
groundtruth,i.eC; = {14+5(i—1),...,5i} asweusd,; = 5.  vation of these two instruments is different and our method can take
¢ “Proposed method”:As introduced in Sec. 3 and 4, we use the advantage of this information.
LPC error criterion for the clustering with an LPC filter length  Einaly, it is interesting to note that in some situations, the SDR
P =10 and in each iteration, we updafe = 2 components.  of the estimated source is even better than for the oracle clustering,
OVera“, we restart the algorlthm 50 times in Ol’del’ to CalCUlateelg” MFCCkmeans produces better resu|ts for the snare Of “Take
the similarity matrixQ and runkmedoids on it to obtain the final  Five” than oracle clustering. The reason is that during the procedure
clustering. ] ) of generating separated components, we update only the time acti-
e “MFCC kmeans [7]": This approach uses a Mel filter bank of yation matrixH while fixing the frequency basis matrW. If two
size30 which is applied to the frequency basis vector3dhin  sources have a similar frequency basis, interference between instru-
order to compute MFCCs. These are then clustereéwieans.  ments can be introduced through the time activation matrix and the
For the Mel filter bank, we use the implementation [23] of [24]. quality of sources with relatively small amplitude will be damaged.
e “MelNMF[7]": This approach also applies a Mel filter bank of e could see this phenomenon for the flute of “MIREX”, the snare
size30 to the original frequency basis vectors and uses a secongr “Take Five” and the violin of “Bach”. Thus, the local optimum
NMF to perform the clustering. clustering for each instrument might not be the oracle clustering,

e “Shifted-NMF [9]": For this approach, we use a constant Qnowever, oracle clustering provides us the best clustering in general.
transform matrix with minimal frequency5 Hz and 24 fre-

quency bins per octave. The shifted-NMF decomposition is al-

lowed to use a maximum @ shifts. The constant Q transform 6. CONCLUSIONS AND FUTURE WORK

source code was kindly provided by D. FitzGerald and we usdn this paper, we have proposed a new clustering criterion for single-

the Tensor toolbox [25,26] for the shifted-NMF implementation. channel NMF source separation. As it is computed in the time-
In Table 1, we givesignal-to-distortion ratio (SDR), signal-to-  domain, it combines information from the frequency basis vectors
interference ratio(SIR) andsignal-to-artifact ratio (SAR) values ~ and their corresponding activations and we could show that it per-
for all instruments [22]. For each instrument, the separation givforms superior to the current state-of-the-art algorithms.
ing highest SDR is emphasized in bold-face. From the results, we Due to the properties of linear predictive coding, our method
can see that our algorithm outputs the source separation with theorks well for harmonic sources but may fail for percussive ones
best average SDR result on all three-source music files (“Brahms¥Ve therefore plan to incorporate a harmonic/percussive separation
“Lussier”, “Mozart” and “Schubert”) and “MIREX”. For “Bach”, in the first place in order to separate the percussive from the har-
although our method is slightly worse than the others, it separates theonic sources, e.g., using the method [27], before applying the NMF
best saxophone and violin part from the mixture and for “Take Five"source separation with LPC clustering.
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