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ABSTRACT

Non-negative matrix factorization (NMF) based sound source sepa-
ration involves two phases: First, the signal spectrum is decomposed
into components which, in a second step, are clustered in order to ob-
tain estimates of the source signal spectra. The major challenge with
this approach is the accuracy of the clustering algorithm in the sec-
ond step, especially as most previously used clustering algorithms
are focusing on the frequency part of NMF only and, hence, are miss-
ing the information of the time activation matrix. In this paper, we
propose a novel clustering criterion which combines the frequency
and time activation part of NMF. It is based on the linear predictive
coding compression error and we show that it allows a good cluster-
ing of the NMF components while at the same time can be efficiently
computed. Our new clustering criterion shows an overall improved
performance compared with the current state-of-the-art clustering al-
gorithms as we experiment on the TRIOS dataset.

Index Terms— Non-negative matrix factorization (NMF), Lin-
ear predictive coding (LPC), Blind source separation (BSS)

1. INTRODUCTION

Instantaneous, single-channelblind source separation(BSS) deals
with the problem of obtainingM estimateŝsi(n), i = 1, . . . ,M
of the M source signalssi(n) if only a linear mixturex(n) =
∑M

i=1 si(n) of them is given [1, 2]. One application for BSS is the
separation of music into the individual instrument tracks such that
an upmixing of the original content is possible [3,4].

In this paper, we will use single-channel BSS usingnon-
negative matrix factorization(NMF) as shown in Fig. 1. Such
an approach usually consists of the following steps [5–7]: After
the transformation of the mixturex(n) into the time-frequency
domain using ashort-time Fourier transform(STFT), we apply
NMF to its magnitude spectrum in order to obtainL frequency ba-
sis vectors{w1, . . . ,wL} andL corresponding activation vectors
{h1, . . . ,hL} which we can summarize in the frequency matrix
W ∈ R

F×L
+ and activation matrixH ∈ R

L×K
+ whereF denotes

the number of frequency bins andK the number of time frames.
We will refer to the pair{wl,hl} as lth NMF component. Using
a suitable clustering, theL > M components are grouped intoM
clusters such that we can compute Wiener filter softmasks and use
an inverse STFT to obtain the estimatesŝi(n), i = 1, . . . ,M .

Of these steps, the clustering is the most critical one as we only
obtain good source separation results, if we can find a good group-
ing of the components{wl,hl}. Traditionally, the clustering is ei-
ther manually done or the original sources are used as reference,
for instance in [6, 8]. In [7], Spiertz and Gnann proposed a source-
filter based method for blind clustering ofW with eitherkmeans
or a second NMF, whereW is additionally transformed intoMel-
frequency cepstral coefficients(MFCC). Their results showed sig-

nificant improvement compared with previous unsupervised algo-
rithms. Jaiswal et al. in [9] applied a constant Q transform on
W and used shifted-NMF to separate harmonic instruments from
the mixture. This method is based on western music theory and
he could demonstrate considerably better quality than [7]. In [10],
some efforts have been made to avoid the clustering step by intro-
ducing group sparsity into the NMF separation procedure. However,
this method only works well if the overlapping of sources is less
than roughly66%, which is often not true for realistic applications.
Another approach is [11], which combines information from the fre-
quency basis and time activation matrices assuming that sources are
monophonic. They showed a good performance on simple test files
but the time disjointness assumption doesn’t usually hold for real
world cases, i.e., for polyphonic sources, and hence this approach
fails for such mixtures.

Therefore, we propose in this paper a new clustering criterion
which has the advantage that it not only takes into account the fre-
quency basis vectorswl, but also the learned time activation pat-
ternshl by performing the clustering in the time domain. We will
give an algorithm that minimizes thelinear predictive coding(LPC)
compression error of the source estimates as we can expect that a
clustering where each estimate only contains one source can be com-
pressed more than a clustering where estimates contain interference
from other sources. Using this new clustering produces improved
source separation results compared to the current state-of-the-art al-
gorithms aforementioned.

The remainder of this paper is organized as follows: First, we
review in Sec. 2 the NMF approach for single-channel BSS. Then,
Sec. 3 motivates our compression error criterion and in Sec. 4 we
show that we can efficiently compute it and use it for clustering. Fi-
nally, Sec. 5 gives results on the TRIOS dataset before we conclude
this paper in Sec. 6.

The following notation is used throughout this paper:x denotes
a column vector andX a matrix where in particularI is the identity
matrix. The matrix transpose and Euclidean norm are denoted by
(.)T and‖.‖, respectively. Furthermore,X.∗Y denotes the element-
wise (Hadamard) product ofX with Y andX.∧2 the element-wise
squaring ofX.

2. SINGLE-CHANNEL NMF BASED BSS

In the following, we will review the basic steps for single-channel
NMF based source separation which are also shown in Fig. 1. Let
x(n) ∈ R with n = 1, . . . , N denote a mixture signal which is
composed ofM source signalss1(n), . . . , sM (n), i.e., we have

x(n) =

M
∑

i=1

si(n). (1)
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Fig. 1: Single-channel BSS using NMF with clustering in the frequency domain

Such signals can be observed in many fields and the task of BSS is
to recover estimateŝs1(n), . . . , ŝM (n) of the source signals if only
the mixture signalx(n) is available. We will now give details for
each step:

(a) Time-Frequency representation:In order to use NMF, we first
compute the STFT of the mixture signalx(n) and we obtain the
spectrogramS(f, k) = STFT{x(n)} wheref = 1, . . . , F denotes
the frequency bin index andk = 1, . . . ,K the frame index. We
can conveniently summarize the STFT ofx(n) in matrix notation as
S = X.∗P ∈ C

F×K whereX ∈ R
F×K
+ andP ∈ C

F×K denote
the magnitude and phase spectrogram, respectively.

(b) Non-negative matrix factorization:Assuming that each source
has a characteristic frequency spectrum which can be expressed by a
small number of frequency basis vectors, we can use NMF to extract
them. As we apply NMF to the magnitude spectrogramX, we use
theKullback-Leibler(KL) divergence as cost function, see for exam-
ple [12], and we obtain two non-negative matricesW ∈ R

F×L
+ and

H ∈ R
L×K
+ with X ≈ WH. Additionally, temporal continuity is

enforced as proposed in [6] to obtain a NMF decomposition which
is beneficial for the source separation.

(c) Clustering:Using a suitable clustering method, e.g.,kmeans on
the columns of the frequency basis matrixW, we obtainM clusters
C1, . . . , CM . Please see Sec. 1 for an overview of clustering methods
that have been proposed so far.

(d) Source reconstruction:Finally, the source signals are found by
using Wiener filtering to get source spectrogram estimates and ap-
plying an inverse STFT to them, i.e., we compute

ŝi(n) = ISTFT

{

∑

l∈Ci
(wlh

T
l )

.∧2

∑L

l=1(wlh
T
l )

.∧2
.∗S

}

(2)

for all i = 1, . . . ,M . Due to the Wiener filtering, we know that1

x(n) =
∑M

i=1 ŝi(n).
Of these steps, the clustering step(c) is the most important one

as single-channel NMF based BSS will only work if we can find a
good clustering of the NMF components. In the following, we will
introduce a new clustering criterion which has the advantage that it
improves the source separation results compared to the current state-
of-the-art methods.

3. LPC ERROR CLUSTERING CRITERION

3.1. Definition and Motivation
The clustering criterion that we want to propose is computed in the
time domain and, therefore, we first use Wiener filtering to obtainL

1Note that we neglect here and in the following any artifacts that may be
due to the inverse STFT reconstruction [13].

time componentsc1(n), . . . , cL(n) with

cl(n) = ISTFT

{

(

wlh
T
l

).∧2

∑L

l=1(wlh
T
l )

.∧2
.∗S

}

(3)

wherewl, hl are thelth column and row ofW andH, respec-
tively. In order to solve the source separation problem, we now
need to group theseL signals intoM clustersC1, . . . , CM such that
ŝi(n) =

∑

l∈Ci
cl(n) is a good estimate of theith source signal

si(n). In this paper, we propose to use the compressibility of the
signalsŝi(n) in order to find a good clustering as our assumption
is that we can compress an estimated source signalŝi(n) better if it
only contains components from one source and, hence, our task is
to find the clusteringC1, . . . , CM which results in source estimates
ŝ1(n), . . . , ŝM (n) that can be most compressed. The compression
method that we want to use islinear predictive coding(LPC) which
we will outline in the following: In order to see how much we can
compress an estimated source signalŝi(n), we compute the LPC
error

ei(n) = ŝi(n)− (hŝi ⋆ ŝi) (n), (4)

wherehŝi(n) denotes the causal impulse response of the optimal
LPC filter of lengthP for the signalŝi(n) with hŝi(0) = 0 such
thatei(n) has minimum energy, i.e., at time instancen, we can view
(hŝi ⋆ ŝi) (n) as an optimal estimate ofŝi(n) given the past samples
ŝi(n − 1), . . . , ŝi(n − P ) andei(n) is the difference between the
predicted value(hŝi ⋆ ŝi)(n) and the true valuêsi(n). Combining
the LPC errorsei(n) for all sources, we can compute the overall
error signale(n) =

∑M

i=1 ei(n) and, in order to solve the clustering
problem, we are looking for the clusteringC1, . . . , CM such that the
energy ofe(n) is minimized, i.e., we want to solve

min
C1,...,CM

N
∑

n=1

e(n)2 (5)

with

e(n) =
M
∑

i=1

ei(n) =
M
∑

i=1

(ŝi(n)− (hŝi ⋆ ŝi)(n))

= x(n)−
M
∑

i=1

(hŝi ⋆ ŝi)(n). (6)

From (6), we can see that we subtract from the mixture signalx(n)
all those parts that we can “explain” by LPC and, hence, finding
a clustering with minimum energy

∑N

n=1 e(n)
2 should result in a

good source separation as we will also demonstrate in Sec. 5.
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3.2. Computation of the optimal LPC filter
In the following, we will briefly review linear predictive coding,
please refer to [14] for a more detailed discussion. In linear pre-
dictive coding, we want to predict the sampleŝi(n) given the lastP
samples of it, i.e., we want to minimize the energy of the residual
ei(n) where

ei(n) = ŝi(n)− (hŝi ⋆ ŝi)(n), n = 1, . . . , N, (7)

andhŝi(n) 6= 0 only for 1 ≤ n ≤ P . For convenience, we will use
the following matrix notation: Letei = [ ei(1) ··· ei(N) ]T ∈ R

N ,
ŝi = [ ŝi(1) ··· ŝi(N) ]T ∈ R

N andhŝi = [ hŝi
(1) ··· hŝi

(P ) ]T ∈ R
P

denote the error, estimated source signal and LPC impulse response
for theith source, respectively. Then, we can write (7) as

ei = ŝi − Ŝihŝi (8)

with Ŝi ∈ R
N×P

Ŝi =













0 0 · · · 0
ŝi(1) 0 · · · 0
ŝi(2) ŝi(1) · · · 0

...
. . .

ŝi(N − 1) ŝi(N − 2) · · · ŝi(N − P )













(9)

and it is well known that the optimal prediction filter that minimizes
‖ei‖

2 is given by (see [15])

hŝi = (ŜT
i Ŝi)

−1
Ŝ
T
i ŝi. (10)

Plugging this into (8), we see that the residualei is given by

ei = ŝi − Ŝi(Ŝ
T
i Ŝi)

−1
Ŝ
T
i ŝi (11)

and the overall error ise =
∑M

i=1 ei = x−
∑M

i=1 Ŝi(Ŝ
T
i Ŝi)

−1ŜT
i ŝi

wherex =
∑M

i=1 ŝi is the vector representation of the mixture sig-

nal, i.e.,x =
[

x(1) · · · x(N)
]T

∈ R
N . The overall errore has

the energy, i.e., squaredl2-norm

‖e‖2 = ‖x‖2 − 2
M
∑

i=1

x
T
Ŝi(Ŝ

T
i Ŝi)

−1
Ŝ
T
i ŝi

+
M
∑

i=1

M
∑

j=1

ŝ
T
i Ŝi(Ŝ

T
i Ŝi)

−1
Ŝ
T
i Ŝj(Ŝ

T
j Ŝj)

−1
Ŝ
T
j ŝj . (12)

In order to find a good source separation result, we want to cluster
c1(n), . . . , cL(n) such that‖e‖2 is minimized.

4. PROPOSED CLUSTERING APPROACH

4.1. Outline of the Method
We will now describe an iterative algorithm that we can use for min-
imizing the error energy (12). In each iteration,R components are
randomly chosen and they are assigned to the clusters such that the
error energy (12) is smallest. Hence, the algorithm consists of the
following three steps:

1.) Randomly generate an initial clusteringC1, . . . , CM .

2.) ChooseR (for exampleR = 2) arbitrary components and com-
pute for allMR possible clustering assignments the compres-
sion error. Assign theR components to the clusters such that
(12) is minimized.

3.) Repeat Step 2: For each epoch go through all possible subsets
of sizeR until the clustering is stable.

As this iterative approach is only performing a local optimization,
i.e., we can not guarantee that we have converged to the clustering
with the smallest LPC error, we have observed that we can further
improve the source separation results by restarting the iterative al-
gorithm several times with different initial clustering constellations
and merging their results in an additional fourth step:

4.) Repeat Step 1.) - 3.) with different initial clusterings. Compute
from the clustering results a similarity matrixQ ∈ R

L×L where
the(l1, l2)th element gives the probability that thel1th andl2th
component are in the same cluster and runkmedoids onQ to
output a final clustering.

The kmedoids algorithm that we use here is a basicpartitioning
around medoids(PAM) algorithm, see [16].

4.2. Efficient computation of the LPC Error
As the LPC error (12) needs to be computedMR times in each
iteration, it is important to efficiently compute it. This is possible as
we can exploit the fact that all source estimatesŝi(n) are computed
from theL componentscl(n).
From (11), we see that we use the (cross-)correlation vectorŜT

i ŝi
and (auto-)correlation matrix̂ST

i Ŝi to compute the error energy
‖ei‖

2. Computing both quantities requires eitherO(NP ) oper-
ations if it is computed directly orO(N log(N)) operations if
computed via thefast Fourier transform(FFT), which might be
slow if the signal lengthN is large. However,̂ST

i ŝi andŜT
i Ŝi can

be efficiently computed as we know thatŝi(n) can be expressed as
ŝi(n) =

∑

l∈Ci
cl(n) and, hence,

Ŝ
T
i ŝi =

∑

l1∈Ci

∑

l2∈Ci

C
T
l1
cl2 , Ŝ

T
i Ŝi =

∑

l1∈Ci

∑

l2∈Ci

C
T
l1
Cl2 , (13)

whereCl ∈ R
N×P has the same Toeplitz structure asŜi in (9)

and is composed ofcl(n) such thatŜi =
∑

l∈Ci
Cl and cl =

[

cl(1) · · · cl(N)
]T

∈ R
N is the vector representation of thelth

time component. If we precompute the productsCT
l1
cl2 ∈ R

P and
CT

l1
Cl2 ∈ R

P×P for all 1 ≤ l1, l2 ≤ L then we can quickly eval-
uate (13) at each iteration. Thus, the computation ofei in (11) only
consists of solving the linear system of equationsŜT

i Ŝihŝi = ŜT
i ŝi

which can be done efficiently asP is small, e.g.,P = 10 in Sec. 5.

5. RESULTS
In the following, we will compare our proposed algorithm with the
MFCC-based methods from [7] and shifted-NMF clustering from
[9]. We will use the same pre-training procedure as mentioned in
[17]: For every sourcesi(n), we run the regular KL-NMF algorithm
separately which yields each timeLi different frequency and activa-
tion vectors. Then, we concatenate the found frequency basis vectors
for all M sources such that we obtain the pre-trained frequency ma-
trix W ∈ R

F×L
+ with L = L1+· · ·+LM . Finally, we run KL-NMF

again on the mixture signalx(n) where we keepW fixed and only
update the activation matrixH. This procedure has the advantage
that we know the ground truth of the clustering and, hence, we can
also give the performance of an oracle system that can conduct a per-
fect clustering. However, it is important to note that this pre-training
step is only done for the sake of having an oracle clustering and the
proposed compression error clustering can also be used if the NMF
is learned from the mixture only.

The dataset that we use for our experiment is the same as the
one that was used in [18]: it includes the whole TRIOS dataset [19]
with several music mixtures of multiple harmonic instruments, the
“Bach” quartet from Bach 10 dataset [20], and the “MIREX” quintet
extracted from MIREX 2007 dataset which was also used in [21]. All
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Recording Instrument Oracle clustering Proposed method MFCC kmeans [7] Mel NMF [7] Shifted-NMF [9]
SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR

Brahms
Horn 7.20 9.94 10.91 7.07 13.86 8.27 3.87 5.76 9.41 4.17 5.83 10.17 2.95 3.34 15.20
Piano 5.73 8.48 9.59 0.64 1.04 13.63 3.30 4.42 10.76 −0.10 0.21 14.39 3.78 5.59 9.50
Violin 10.14 19.24 10.76 10.14 19.24 10.76 −8.35 −7.89 10.21 9.69 19.79 10.19 7.66 10.96 10.74

Lussier
Bassoon 8.08 11.76 10.79 8.08 11.76 10.79 1.85 11.67 2.61 0.15 0.75 11.72 −0.83 −0.60 15.43

Piano 7.15 10.93 9.83 7.15 10.93 9.83 4.66 6.28 10.64 4.56 8.00 7.83 2.54 5.14 7.16
Trumpet 10.10 16.87 11.22 10.10 16.87 11.22 −1.73 −1.29 12.18 8.46 18.12 9.05 6.57 7.39 14.95

Mozart
Clarinet 14.44 22.99 15.91 14.44 22.99 15.91 13.82 23.37 14.35 13.82 23.37 14.35 10.62 11.78 17.18
Piano 9.02 5.85 11.37 9.02 5.85 11.37 −3.80 −3.51 13.21 5.12 6.58 11.43 4.40 5.25 13.03
Viola 2.62 14.44 5.31 2.62 14.44 5.31 −4.83 −3.80 7.28 −8.25 −7.92 11.66 2.41 6.55 5.39

Schubert
Cello 7.01 16.26 7.66 7.01 16.26 7.66 −6.48 −6.04 10.70 −7.57 −7.08 9.97 −0.09 0.41 12.34
Piano 10.64 14.67 12.98 10.64 14.67 12.98 8.85 17.92 9.49 4.05 5.84 9.77 4.44 5.06 14.35
Violin 6.38 10.27 9.05 6.38 10.27 9.05 −2.34 −1.61 9.60 0.33 1.64 8.42 −1.39 −0.46 9.02

Bach

Bassoon 5.15 8.31 8.62 −15.95 −15.09 6.73 3.72 5.96 8.64 0.63 1.64 9.73 −0.44 0.35 10.15
Clarinet 5.29 7.84 9.47 −0.69 0.01 10.57 2.70 4.11 9.72 0.25 1.87 7.49 1.10 2.02 10.42

Saxophone 5.81 11.26 7.58 5.81 11.26 7.58 −0.55 0.49 8.93 −1.25 −0.48 9.95 3.16 4.52 10.17
Violin 7.79 14.13 9.10 8.62 15.73 9.67 5.74 8.15 10.08 7.13 13.93 8.32 4.19 5.79 10.31

Take Five

Kick 12.38 20.91 13.08−11.53 −5.19 −4.04 12.38 20.91 13.08 12.38 20.91 13.08 11.14 16.14 12.89
Piano 4.06 6.79 8.19 −0.97 −0.33 10.82 2.83 6.37 6.28 −1.35 −0.83 11.53 2.66 4.30 9.07
Ride 5.67 12.59 6.89 5.67 12.59 6.89 −32.39 −30.38 2.31 −0.48 12.56 −0.02 −2.63 −1.23 6.64

Saxophone 9.47 17.72 10.25 7.66 16.69 8.34 6.84 18.12 7.24 5.39 19.53 5.60 8.26 10.78 12.17
Snare −0.08 9.11 0.98 1.41 11.82 2.10 1.82 11.96 2.54 −1.56 1.70 3.47 −24.21 −23.20 5.89

MIREX

Bassoon 7.74 14.92 8.81 7.74 14.92 8.81 1.49 3.65 7.12 1.20 3.40 6.83 0.35 1.23 10.19
Clarinet 6.54 9.43 10.14 −1.35 −0.62 10.12 1.85 2.95 10.12 −1.04 −0.43 11.01 1.54 2.19 12.16

Flute 9.76 16.02 11.05 10.07 18.88 10.74 4.71 5.79 12.30 7.50 10.36 11.05 6.30 6.95 15.63
Horn 5.61 10.18 7.87 1.93 5.50 5.52 −0.79 2.00 4.58 −0.69 2.15 4.57 1.68 2.64 10.61
Oboe −6.22 −4.43 4.26 −12.97 −12.54 10.05 −8.86 −8.18 8.30 −10.89 −10.62 12.27 −9.23 −8.30 6.82

Table 1: Single-channel NMF separation results for the TRIOS dataset, all values are given in dB

music files are down-sampled to16 kHz to speed up our method and
the BSS Eval toolbox is utilized to evaluate the obtained source sep-
aration results, see [22]. Furthermore, we use the following experi-
mental settings: The magnitude spectrogram of the mixture signal is
obtained using a STFT with a 75% overlapping Hamming window
and a window length of size4096. For the pre-training, each source
is separated intoLi = 5 components such that the overall number
of components isL = 5M .

The obtained source separation results are summarized in Ta-
ble 1 where we compare the following approaches:
• “Oracle clustering”: The clustering is done according to the

ground truth, i.e.,Ci = {1+5(i−1), . . . , 5i} as we useLi = 5.
• “Proposed method”:As introduced in Sec. 3 and 4, we use the

LPC error criterion for the clustering with an LPC filter length
P = 10 and in each iteration, we updateR = 2 components.
Overall, we restart the algorithm 50 times in order to calculate
the similarity matrixQ and runkmedoids on it to obtain the final
clustering.

• “MFCC kmeans [7]”: This approach uses a Mel filter bank of
size30 which is applied to the frequency basis vectors inW in
order to compute MFCCs. These are then clustered viakmeans.
For the Mel filter bank, we use the implementation [23] of [24].

• “Mel NMF [7]”: This approach also applies a Mel filter bank of
size30 to the original frequency basis vectors and uses a second
NMF to perform the clustering.

• “Shifted-NMF [9]”: For this approach, we use a constant Q
transform matrix with minimal frequency55 Hz and24 fre-
quency bins per octave. The shifted-NMF decomposition is al-
lowed to use a maximum of24 shifts. The constant Q transform
source code was kindly provided by D. FitzGerald and we use
the Tensor toolbox [25,26] for the shifted-NMF implementation.

In Table 1, we givesignal-to-distortion ratio (SDR), signal-to-
interference ratio(SIR) andsignal-to-artifact ratio (SAR) values
for all instruments [22]. For each instrument, the separation giv-
ing highest SDR is emphasized in bold-face. From the results, we
can see that our algorithm outputs the source separation with the
best average SDR result on all three-source music files (“Brahms”,
“Lussier”, “Mozart” and “Schubert”) and “MIREX”. For “Bach”,
although our method is slightly worse than the others, it separates the
best saxophone and violin part from the mixture and for “Take Five”

the proposed algorithm is only worse than the Mel NMF method.
The reason why it fails to work fine for “Take Five” is that there are
two percussive sources, i.e., “Kick” and “Snare”, which are not well
suited for the LPC compression error and we are therefore planning
to extend our method, see Sec. 6.

The advantage of our proposed clustering method lies in the
combination of frequency and time information. A good example
of this advantage can be seen for “Schubert”: It consists of three
sources (cello, piano and violin) where the cello and the violin have
similar frequency basis vectors and, hence, the other three algo-
rithms fail to separate these two sources. However, the time acti-
vation of these two instruments is different and our method can take
advantage of this information.

Finally, it is interesting to note that in some situations, the SDR
of the estimated source is even better than for the oracle clustering,
e.g., MFCCkmeans produces better results for the snare of “Take
Five” than oracle clustering. The reason is that during the procedure
of generating separated components, we update only the time acti-
vation matrixH while fixing the frequency basis matrixW. If two
sources have a similar frequency basis, interference between instru-
ments can be introduced through the time activation matrix and the
quality of sources with relatively small amplitude will be damaged.
We could see this phenomenon for the flute of “MIREX”, the snare
of “Take Five” and the violin of “Bach”. Thus, the local optimum
clustering for each instrument might not be the oracle clustering,
however, oracle clustering provides us the best clustering in general.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new clustering criterion for single-
channel NMF source separation. As it is computed in the time-
domain, it combines information from the frequency basis vectors
and their corresponding activations and we could show that it per-
forms superior to the current state-of-the-art algorithms.

Due to the properties of linear predictive coding, our method
works well for harmonic sources but may fail for percussive ones.
We therefore plan to incorporate a harmonic/percussive separation
in the first place in order to separate the percussive from the har-
monic sources, e.g., using the method [27], before applying the NMF
source separation with LPC clustering.

264



7. REFERENCES

[1] P. Comon and C. Jutten, Eds.,Handbook of Blind Source Sep-
aration: Independent Component Analysis and Applications,
Academic Press, 2010.

[2] G. R. Naik and W. Wang, Eds.,Blind Source Separation:
Advances in Theory, Algorithms and Applications, Springer,
2014.

[3] D. FitzGerald, “Upmixing from mono - a source separation ap-
proach,”Proc. 17th International Conference on Digital Signal
Processing, 2011.

[4] D. FitzGerald, “The good vibrations problem,”134th AES
Convention, e-brief, 2013.

[5] D. FitzGerald, M. Cranitch, and E. Coyle, “Shifted non-
negative matrix factorization for sound source separation,”
Workshop on Statistical Signal Processing, pp. 1132–1137,
2005.

[6] T. Virtanen, “Monaural sound source separation by non-
negative matrix factorization with temporal continuity and
sparseness criteria,”IEEE Transactions on Audio, Speech and
Language Processing, vol. 15, pp. 1066–1074, 2007.

[7] M. Spiertz and V. Gnann, “Source-filter based clustering for
monaural blind source separation,”Proc. Int. Conference on
Digital Audio Effects, 2009.

[8] B. Wang and M. D. Plumbley, “Investigating single-channel
audio source separation methods based on non-negative matrix
factorization,”Proceeding of the ICA Research Network Inter-
national Workshop, pp. 17–20, 2007.

[9] R. Jaiswal, D. FitzGerald, D. Barry, E. Coyle, and S. Rickard,
“Clustering NMF basis functions using shifted NMF for
monaural sound source separation,”Proc. IEEE Conference on
Acoustics, Speech, and Signal Processing (ICASSP), pp. 245–
248, 2011.

[10] A. Lefevre, F. Bach, and C. Fevotte, “Itakura-Saito non-
negative matrix factorization with group sparsity,”Proc.
IEEE Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP), pp. 21–24, 2011.

[11] K. Murao, M. Nakano, Y. Kitano, N. Ono, and S. Sagayama,
“Monophonic instrument sound segregation by clustering
NMF components based on basis similarity and gain disjoint-
ness,” 11th International Society for Music Information Re-
trieval Conference, pp. 375–380, 2010.

[12] D. Lee and H. S. Seung, “Algorithms for non-negative ma-
trix factorization,” Advances in neural information processing
systems, pp. 556–562, 2000.

[13] B. Yang, “A study of inverse short-time Fourier transform,”
Proc. IEEE Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), pp. 3541–3544, 2008.

[14] S. Haykin, Adaptive Filter Theory, Prentice-Hall, 4th edition,
2002.

[15] S. M. Kay,Fundamentals of Statistical Signal Processing, Vol-
ume 1: Estimation Theory, Prentice-Hall, 1993.

[16] S. Theodoridis and K. Koutroumbas,Pattern Recognition,
Academic Press, 2006.

[17] E. M. Grais and H. Erdogan, “Single channel speech music
separation using nonnegative matrix factorization and spectral
mask,” IEEE International Conference on Digital Signal Pro-
cessing (DSP), pp. 1–6, 2011.

[18] J. Fritsch and M. Plumbley, “Score informed audio source sep-
aration using constrained nonnegative matrix factorization and
score synthesis,”Proc. IEEE Conference on Acoustics, Speech,
and Signal Processing (ICASSP), pp. 888–891, 2013.

[19] J. Fritsch, “High quality musical audio source separation,”
Master’s Thesis, UPMC / IRCAM / Telecom ParisTech, 2012.

[20] Z. Duan and B. Pardo, “Soundprism: An online system for
score-informed source separation of music audio,”IEEE Jour-
nal of Selected Topics in Signal Processing, vol. 5, no. 6, pp.
1205–1215, 2011.

[21] J. Fritsch, J. Ganseman, and M. D. Plumbley, “A comparison of
two different methods for score-informed source separation,”
5th International Workshop on Machine Learning and Music,
2012.

[22] E. Vincent, R. Gribonval, and C. Févotte, “Performance mea-
surement in blind audio source separation,”IEEE Transactions
on Audio, Speech and Language Processing, vol. 14, no. 4, pp.
1462–1469, 2006.

[23] P. Brady, “Matlab Mel filter implementation,”
http://www.mathworks.com/matlabcentral/
fileexchange/23179-melfilter , 2014, [Online].

[24] F. Zheng, G. Zhang, and Z. Song, “Comparison of different
implementations of MFCC,”Journal of Computer Science and
Technology, vol. 16, no. 6, pp. 582–589, 2001.

[25] B. W. Bader and T. G. Kolda, “MATLAB tensor toolbox
version 2.5,” http://www.sandia.gov/ ˜ tgkolda/
TensorToolbox/ , 2012, [Online].

[26] B. W. Bader and T. G. Kolda, “Algorithm 862: MATLAB ten-
sor classes for fast algorithm prototyping,”ACM Transactions
on Mathematical Software, vol. 32, no. 4, pp. 635–653, 2006.

[27] D. FitzGerald, “Harmonic/percussive separation using Median
filtering,” International Conference on Digital Audio Effects,
2010.

265


