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ABSTRACT

This work proposes a solution to the problem of under-determined

audio source separation using pre-trained redundant source-based

prior information. In local Gaussian modeling of a mixing process,

an observed mixture is modeled by a Gaussian distribution param-

eterized by source variances and spatial covariance matrices. The

separation is performed by estimating the parameters, and applying

Wiener filtering on the observed mixture. We propose, in a train-

ing phase, to build a redundant library of spectral basis matrices of

all probable source power spectra, applying non-negative tensor fac-

torization (NTF). In the testing phase, the matrices that match the

observed mixture are detected using NTF. With the help of the de-

tected matrices, a maximum likelihood algorithm is proposed in or-

der to iteratively estimate the parameters of the model, exploiting the

spatial redundancy of the observed mixture and using NTF. The pro-

posed algorithm proves more flexibility and efficiency with respect

to a baseline algorithm used as a reference.

Index Terms— Spectral bases, redundant library, non-negative

tensor factorization, model parameters, audio source separation.

1. INTRODUCTION

Using side information has recently raised as a new trend to in-

crease the performance of blind source separation [1, 2]. Several

forms of the information have been exploited to solve the problem

in [3, 4, 5, 6]. Audio source separation for indoor conversations can

benefit from information about the parameters of mixing environ-

ments [7, 8], the spatial locations of speakers [9], and the spectral

variances of source signals [10, 11]. The variance of source signals

can be modeled using Gaussian mixture models (GMMs) [12] or

non-negative matrix factorization (NMF) [11, 13]. In the NMF ap-

proaches, source spectrum is decomposed into the multiplication of

two nonnegative matrices: a spectral basis matrix that contains parts

of the spectrum, and a coefficient matrix that contains time-varying

weights. These two matrices may be estimated during the separa-

tion process [13], or, to achieve a higher separation performance, the

spectral basis matrix may be predefined as prior information [11, 13].

For speech enhancement purposes, a dictionry of spectral bases of

multiple source signals is suggested to be used as prior information

in [14, 15], and the selection of the optimal bases is done using some

block sparsity constraints on top of the NMF objective. An exten-

sion to NMF has been considered by arranging multiple signal ob-

servations in a tensor form, under a parallel factorization analysis

(PARAFAC) structure, where the observations form the slices of 3-

D tensor [16, 17]. In non-negative tensor factorization (NTF), the
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tensor is decomposed into three matrices. The redundancy between

the slices is described by two matrices as in NMF, while the diver-

sity is represented by a third matrix. In the case of multichannel

observations, the third matrix can be considered to describe source

spatial diversity and its columns to convey spatial cues. In [18], the

authors solve source separation of simple instantaneous mixtures by

giving weights to the time-frequency points of observations accord-

ing to their closeness to the spatial cues, assumed to be known as

prior information.

In [11], we proposed a reverberant audio source separation al-

gorithm, exploiting side information about the source variance. In a

training step, the power spectra of each source signal files are con-

catenated and decomposed using NMF, and the side information is

defined as the spectral basis matrices of the sources. Assuming that

the spatial locations of speakers are labeled for each source, a spec-

tral basis matrix is predefined and fixed for each label, and then it is

used to perform the separation process. Using the information, we

follow the local Gaussian model [19] to probabilistically parametrize

the observed mixture by a set of parameters, source variances and

spatial covariance matrices. To perform the separation using the in-

formation, the parameters are estimated and used to compute mul-

tichannel Wiener gains that are applied to extract the contribution

of each source signal from the observed mixture. Although the al-

gorithm performs well and achieves a good separation performance,

it suffers from two main weak points that we try to mitigate in this

work. The first point is the reliability of fixing spectral basis matri-

ces for each source in advance, which means that the order of source

spatial locations should be identified a priori. The second point is

that we are loosing important spatial redundancy in the training and

the estimation since we used NMF.

In order to mitigate the first weak point and to increase flexibil-

ity of the algorithm, we propose to build a redundant (over-complete)

library of spectral basis matrices of all available sources. Then the

matrices matching the observed mixture are detected and exploited

to separate the mixture. To mitigate the second weak point and to ex-

ploit spatial redundancy of the observed mixture, we replace NMF

for the training and the estimation with non-negative tensor factor-

ization (NTF). The rest of the paper is organized as follows. In Sec-

tion 2, we present the formulation of the problem. The proposed

algorithm is explained in Section 3 and the experimental evaluation

are reported in Section 4. Finally Section 5 concludes the paper.

2. PROBLEM FORMULATION

We assume that N sources are observed by an array of M -

microphones. In the time-frequency domain, let the signal generated

by the n-th source and the signal at the m-th microphone be denoted

by Sn(f, l) and Xm(f, l), respectively, where (f, l) indicates the in-

251978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



dexes of a time-frequency point out of L total number of frames and

F total number of frequency bins. The vector of the observed mix-

ture X(f, l) = [X1(f, l) · · ·XM (f, l)]T can be modeled, as follows

X(f, l) =

N
∑

n=1

cn(f, l), (1)

where cn(f, l) is a M × 1 vector that defines the spatial image of

the n-th source at the microphones as

cn(f, l) = hn(f)Sn(f, l), (2)

and hn(f) is a M×1 vector that corresponds to the transfer function

between the n-th source and the microphones at the f-th frequency,

and defines the contribution of the source in the mixture.

In the local Gaussian modeling of a mixing process [19], the

coefficients of the source spatial image cn(f, l) are assumed to be

independent from each other, and from one source to the others. The

coefficients are probabilistically modeled by a zero-mean Gaussian

random vector, i.e. cn(f, l) ∼ N (0,Σcn
(f, l)), with a covariance

matrix Σcn
(f, l) computed as

Σcn
(f, l) = vn(f, l)Rn(f), (3)

where vn(f, l) is a scalar variance encoding the power spectrum of

the source signal Sn(f, l), and Rn(f) is a M × M spatial covari-

ance matrix encoding the source spatial information hn(f). Source

separation can be performed by estimating the model parameters

θ = {v1(f, l), ..., vN (f, l),R1(f), ...,RN (f)}. Moreover, the spa-

tial images of all sources are derived in the minimum mean square

error (MMSE) sense using the multichannel Wiener filtering of the

mixture such as

c̃n(f, l) = Σcn
(f, l)(

N
∑

n=1

Σcn
(f, l))−1

X(f, l). (4)

3. THE PROPOSED ALGORITHM

We propose a new framework of source separation using source-

based pre-trained information. In the first step, a redundant library of

spectral basis matrices is built by factorizing the power spectra of all

available source signals using NTF. Secondly, unlike as in [14, 15],

we detect multiple spectral basis matrices best matching the actual

source signals in the observed mixture X(f, l). Finally, the detected

matrices are used to iteratively estimate the set of parameters θ in the

ML sense, and the Wiener filtering process in (4) is applied on the

observed mixture to extract the contribution of each source signal.

3.1. Building of the redundant library

Let us define V
I(f, l) as a tensor of I signal examples, each i-th

slice of the tensor is the power spectrum matrix of each signal exam-

ple, where V
i(f, l) = [v(f, l)]iF×L is a matrix of size F × L. NTF

approximately represents the tensor as

V
I(f, l) ≃ U(f, k)⊗D

I(k, k)⊗W(k, l). (5)

where ⊗ denotes the tensor multiplication, where each i-th slice of

the tensor is the multiplication of a F × K spectral basis matrix

U(f, k) (K is the number of bases), the diagonal i-th slice of a

K ×K × I tensor DI(k, k), and a K × L time-varying coefficient

matrix W(k, l). The factorization is achieved by minimizing an er-

ror function between V
I(f, l) and U(f, k)⊗D

I(k, k)⊗W(k, l),
under the non-negativity constraint of the coefficients of the ma-

trices. The multiplicative update rule of minimizing the Kullback-

Leibler (KL) divergence as the error function is given by [16, 17]

U(f, k)← U(f, k)

∑
i(V

i(f, l)⊘ V̂i(f, l))W(k, l)TDi(k, k)
∑

i 1FLW(k, l)TDi(k, k)
,

W(k, l)←W(k, l)

∑
i D

i(k, k)U(f, k)T (Vi(f, l)⊘ V̂i(f, l))
∑

i D
i(k, k)U(f, k)T 1FL

,

D
i(k, k)← D

i(k, k)
U(f, k)T (Vi(f, l)⊘ V̂i(f, l))W(k, l)T

U(f, k)T 1FLW(k, l)T
,

(6)

where ⊘ indicates point-wise division, 1FL is a F × L matrix of

ones, and V̂
i(f, l) is the i-th matrix of the estimated tensor. To con-

stitute the library for a number Z of training source signals as in [14],
the spectral basis matrices are estimated and sequentially arranged as

UZ = [U1(f, k)|U2(f, k)| · · · |UZ(f, k)], (7)

where UZ is a library of Z spectral matrices and of size F × ZK.

3.2. Detection of the matched spectral basis matrices

Assuming that an estimation of the source spatial image c̃n(f, l) is

defined, an empirical covariance matrix R̃cn
(f, l) can be calculated.

The diagonal coefficients of the matrix approximately describe the
variance at the (f, l) point of the n-th source weighted by propaga-
tion inter-channel intensities. We arrange the diagonal coefficients
in a tensor of size F ×L×M that is factorized using the predefined
redundant library such as

Ṽ
M
n (f, l) = UZ ⊗ D̃

M
n ⊗ W̃n, (8)

where W̃n is a ZK × L coefficient matrix, and D̃
M
n is a diago-

nal tensor of size ZK × ZK × M , encoding the contribution of
each spectral basis vector of the library in the tensor. To detect the
index z of a basis matrix matching the true basis matrix Un(f, k)

from the library UZ , the tensor D̃M
n is divided into Z sub-tensors

D̃
M
n (k, k)|z , each of size K×K×M . To compensate the indetermi-

nacy of the channel intensities, an averaging operation is performed
in the m-th direction of the sub-tensors, converting it to a K × K
diagonal matrix, and for each k a quadratic function is computed as

Γz(k) =

√

√

√

√

1

M

M
∑

m=1

(D̃m
n (k, k)|z)2. (9)

The index of the matched basis matrix is detected by computing the
likelihood of each sub-tensor, summing over the coefficients of the
quadratic function in (9), and selecting the optimal index maximiz-
ing the likelihood function as

z
∗ = argmax

z

K
∑

k=1

Γz(k), z = 1, 2, ..., Z. (10)

For each source n, we detect an optimal index z∗.

3.3. Estimation of the model parameters

As in [11], we reformulate the model parameters to estimate to be

θ̂ = {ṽ1(f, l), ..., ṽN (f, l), R̄1(f), ..., R̄N (f)}, where ṽn(f, l) is
an estimated source variance corrupted by spatial information, de-
fined as

ṽn(f, l) = vn(f, l)||Rn(f)||F , (11)

where ||.||
F

indicates the Frobenius norm of a square matrix. R̄n(f)
is a normalized spatial covariance matrix, defined as

R̄n(f) =
Rn(f)

||Rn(f)||F
. (12)

252



Computing the estimated covariance matrix of the n-th source spatial
image as the multiplication of the parameters in (11) and (12), leads
to an estimation of the matrix as in (3), which is rewritten as

Σcn
(f, l) = ṽn(f, l)R̄n(f). (13)

This reformulation gives us the opportunity to directly estimate

ṽn(f, l), using the empirical covariance matrix R̃cn
(f, l), regard-

less of the estimated spatial information. In order to estimate the
parameters in the ML sense [11], the error between Σcn

(f, l) in

(13) and R̃cn
(f, l) is minimized with respect to each parameter.

The empirical covariance matrix can be computed as

R̃cn
(f, l) =

∑
f̃ ,l̃

γ(f̃ − f, l̃− l)c̃n(f̃ , l̃)c̃n(f̃ , l̃)H

∑
f̃ ,l̃

γ(f̃ − f, l̃− l)
, (14)

where γ is a bi-dimensional window describing the shape of the
neighborhood, and .H indicates matrix conjugate transposition.

3.3.1. Estimation of ṽn(f, l)

The singular value decomposition represents a complex matrix by
sigular values and two unitary matrices. As a specific case, a rank-1
complex matrix can be described by one singular value. Modeling

R̃cn
(f, l) as a rank-1 matrix, the decomposition can be specified

such as

R̃cn
(f, l) = σn(f, l)An(f), (15)

where σn(f, l) is a scalar singular value, and An(f) is a M × M
rank-1 unitary matrix. In [11] the spatially corrupted source variance
is estimated to equal σn(f, l). However, the estimation does not ex-
ploit the spectral-temporal redundancy between the time-frequency
points of the estimated source spatial image. We propose a new esti-
mation algorithm that does not just consider the spectral-temporal
redundancy, but also the spatial redundancy between propagation
channels. As an approximation, the diagonal coefficients of An(f)
describe the inter-channel intensities, and the off-diagonal coeffi-
cients represent the cross-channel spatial information. We arrange
the singular value σn(f, l) times the diagonal coefficients of An(f)

in the tensor ṼM
n (f, l); where each (f, l) coefficient of the m-th ma-

trix of the tensor is σn(f, l) weighted by the (m,m) coefficient of
An(f). The n-th tensor is decomposed using the detected spectral
basis matrix Un(f, k) introduced in section 3.2 such as

Ṽ
M
n (f, l) = Un(f, k)⊗ D̃

M
n (k, k)⊗ W̃n(k, l), (16)

As it was previously stated, the diagonal coefficients of each K×K

matrix of the tensor D̃M
n (k, k) encode the contribution of each spec-

tral basis vector. For the (k, k) vector of length M in D̃
M
n (k, k), we

propose to select the m-th channel index that maximizes the contri-
bution of each basis vector in Un(f, k), and the optimal index of the
coefficient is selected as follows

m
∗ = argmax

m
D̃

m
n (k, k), m = 1, 2, ...,M. (17)

Then the spatially corrupted source variance is reconstructed as

Ṽn(f, l) = [ṽn(f, l)]F×L = Un(f, k)D̃
m∗

n (k, k)W̃n(k, l).
(18)

3.3.2. Estimation of R̄n(f)

Up to the factorization error, the modeled covariance matrix in (13)
can be rewritten in the decomposition form as

Σcn
(f, l) = Un(f, k)D̃

m∗

n (k, k)W̃n(k, l)R̄n(f). (19)

Rewriting the empirical covariance matrix is in the polar form

(R̃cn
(f, l) = |R̃cn

(f, l)| 6 R̃cn
(f, l)), a tensor of size F ×L×M2

can be built from absolute values of the matrix coefficients. The
tensor is factorized using the pre-defined spectral basis matrix, and
the full representation of the matrix is written as

R̃cn
(f, l) ⇐ Un(f, k)⊗ D̃

M2

n (k, k)⊗ W̃cn(k, l) 6 R̃cn
(f, l),

(20)
where the arrow means that the tensor representation of the right
hand side is rearranged in a matrix form in the left hand side. Min-
imizing the error with respect to R̄n(f) between Σcn

(f, l) and

R̃cn
(f, l) in (19) and (20), respectively, leads to an estimation of

the normalized spatial covariance matrix such as

R̄n(f) ⇐
1

KL

L
∑

l=1

K
∑

k=1

D̃
M2

n (k, k)⊗ W̃cn(k, l)

D̃m∗

n (k, k)W̃n(k, l)
6 R̃cn

(f, l),

(21)
where the division is a point-wise operation.

4. EXPERIMENTAL ANALYSIS AND RESULTS

A room with size 4.45 × 3.35 × 2.5 meters and an array of 2
omni directional microphones spaced of 0.2 m are considered. The
microphones are located in the middle of the room and have the
same height (1.4 m) as the sources. The distance between source
positions and a center point between the microphones is either 0.5
or 1 m. The source directions of arrival of three mixed sources are
35, 90, and 145 degrees. Synthetic room impulse responses (RIRs)
are simulated through ISM [20] with a sampling frequency of 16
kHz for three reverberation times: T60 = 200, 350, or 500 ms. 6
native Italian speakers are considered as our audio sources, 3 males
and 3 females, from the clean speech dataset of the DIRHA project
(Distant-speech Interaction for Robust Home Applications). For
each speaker, we have 20 signals, each signal of length 8.75 s. The
clean speech signals are divided into 5 speech signals of test data
and 15 of training data. 4 male-female combinations of mixtures
of N = 3 speech sources (3 males, 3 females, 2 females and 1
male, and 2 males and 1 female) are generated by individually
convolving the full length of the simulated RIRs with the original
source signals and adding the source image contributions to each
microphone. This resulted in a total of 20 test mixtures for each
T60 and source-microphone distance. The discrete time-frequency
representation of the mixture X(k, l) is obtained through STFT
with a Hanning analysis window with length of 128 ms , or 2048
samples, with a shift factor of 64 ms (L = 137). The window γ
for the computation of the empirical covariance matrix of the source
image is of size 1 × 1. We evaluated the separation performance
via the signal-to-distortion ratio (SDR) and source image-to-spatial
distortion ratio (ISR) criteria in decibels (dBs) [21] using the spatial
images of true sources cn(f, l) and the estimated ones c̃n(f, l).

4.1. Analysis of the detection algorithm

For each signal example (I = 15) of the training data of the speech
folders (Z = 6), the source power spectrum is computed and ar-
ranged in the tensor V15(f, l) of size 1025× 137× 15. The tensor
is factorized with a number K of bases equals to 50, and a spec-
tral basis matrix U(f, k) of size 1025 × 50 is estimated to build
the library UZ of 6 spectral basis matrices of size 1025 × 300. On
source-to-microphone distance of 1m, and in a reverberant environ-
ment with reverberation time of 200 ms, a mixture of two males
and one female speech signals was generated. As a function of sep-
aration iterations, we computed the cost function of calculating the
likelihood of the sub-tensor coefficients associated with each spec-
tral basis vector in (9), as well as the likelihood of each sub-tensor,
summing over the likelihoods of the coefficients of the sub-tensor.
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Fig. 1: Likelihood functions of the detection algorithm as a function of the separation iterations.

Table 1: Separation performance in dB for K = 60.
Source-to-microphone distance is 0.5 m.

T60 SS-NTF SS-NMF Improvement(%)
(ms) SDR ISR SDR ISR SDR ISR

200 9.06 15.40 8.35 14.80 8.50 4.05
350 7.91 13.60 7.26 13.07 9.00 4.05
500 6.90 12.12 6.30 11.70 9.52 3.60

Source-to-microphone distance is 1 m.

T60 SS-NTF SS-NMF Improvement(%)
(ms) SDR ISR SDR ISR SDR ISR

200 7.11 12.58 6.53 12.11 8.90 3.90
350 5.20 9.90 4.46 9.23 16.60 7.26
500 4.11 8.47 3.55 8.04 15.77 5.35

As we observe in Fig. 1, the likelihood of spectral bases associated
with a certain target source (source number 5), increases iterating
the separation algorithm, and the optimal index of the sub-tensor be-
comes more identifiable with respect to the other indexes.

In terms of source-to- microphone distances and reverberation
times, the accuracy of the detection algorithm was tested on several
female-male mixture combinations. For a distance of 0.5 m and for
each of the tested reverberation times (200, 350, and 500 ms), the
algorithm detects with 100% the matched basis matrices. Moreover,
the detection was successfully achieved with 100% on a distance
of 1 m and reverberation times of 200 and 350 ms. However, for
what concerns highly reverberant environments, the accuracy of the
detection reduced to around 65% when the distance was 1m and the
reverberation time was 500 ms.

4.2. Source separation

As it was previously mentioned, the source separation is achieved
by estimating the model parameters using the detected spectral ba-
sis matrices as in (18) and (21), computing the covariance matrix
of the spatial image as in (13), and applying the Wiener filtering as
in (4). The algorithm is initialized as in [11], and it converges af-
ter 4 or 5 iterations. We compared the performance of the proposed
algorithm, called source separation using non-negative tensor fac-
torization (SS-NTF), with an efficient source separation algorithm
informed by spectral basis matrices factorized by non-negative ma-
trix factorization (SS-NMF) in [11]. For the SS-NMF, the matrices
are predefined and fixed for each source in advance with a number
of bases K equals to 15, tuned to the best performed value. The SS-
NMF algorithm outperforms the blind ML in [22] by around 4 dBs of
SDR and 5 dBs of ISR. Besides the flexibility of SS-NTF in detect-
ing the matched spectral basis matrices, the separation performance
is further improved, as it is reported in Table1. Fixing the number of

Fig. 2: Percentages of SDR and ISR improvements as a function of
the reverberation times and the number of spectral bases K.

spectral bases K at 60, the table shows an example of the calculated
values of the separation performance. When the spatial positions of
the sources to the microphones is 0.5 m, there is an improvement
in the SDR by around 9%, and a suppression of the amount of spa-
tial distortion by around 4%. However, the performance increases in
reverberant environments and far talking by around 16% of SDR.

The amount of improvement is also shown in Fig. 2 as a func-
tion of the number of spectral bases K. For the proposed algorithm,
we can observe that with a dense spectral basis matrix, where K is
large, the separation performance is improved, when the distance is
0.5 m and under low reverberant conditions. However, in case of
high reverberant environments and distant talking, there is not a big
difference in the percentage of improvement as a function of K.

5. CONCLUSION

This paper proposed a new framework of source separation using
source-based prior information. Source power spectra of a set of
training speech signals are decomposed by applying NTF, and a re-
dundant library of spectral basis matrices, extracted in the decom-
position, is built. Observing the mixture, the matched spectral basis
matrices are detected using NTF. To perform the separation by fol-
lowing the local Gaussian modeling of the mixing process, the de-
tected matrices are used to estimate a set of parameters of the model.
Exploiting the redundancy of the observed mixture, the parameters
are estimated in the ML sense using NTF. The contribution of each
source signal in the mixture is extracted, applying the Wiener filter-
ing process. The proposed algorithm was compared with our NMF
based source separation algorithm and provided more flexibility and
better separation performance.
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