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ABSTRACT

Pitch information is an important cue for speech separation.
However, pitch estimation in noisy condition is also a task
as challenging as speech separation. In this paper, we
propose a supervised learning architecture which combines
these two problems concisely. The proposed algorithm is
based on deep stacking network (DSN) which provides a
method of stacking simple processing modules in building
deep architecture. In the training stage, an ideal binary mask
is used as target. The input vector includes the outputs
of lower module and frame-level features which consist of
spectral and pitch-based features. In the testing stage, each
module provides an estimated binary mask which is employed
to re-estimate pitch. Then we update the pitch-based features
to the next module. This procedure is embedded iteratively
in DSN, and we obtain the final separation results from the
last module of DSN. Systematic evaluations show that the
proposed approach produces high quality estimated binary
mask and outperforms recent systems in generalization.

Index Terms— Speech separation, Pitch estimation,
Computational auditory scene analysis, Supervised learning

1. INTRODUCTION
In realistic environments, noise usually degrades the speech
intelligibility of hearing-impaired listeners or performance
of automatic speech recognition (ASR) systems. Speech
separation aims to remove noise by separating target speech
from background interference. It is helpful for both hearing
aids wearers and ASR systems [1, 2]. Computational auditory
scene analysis (CASA) is a promising method to solve the
speech separation problem [3].

CASA defines the goal of speech separation as computing
an ideal binary mask (IBM) [4], which is useful for
improving speech intelligibility [5] and the performance
of speech/speaker recognition [6, 7]. The IBM is a time-
frequency (T-F) mask, which can be computed from premixed
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target and interference. Specifically, in a T-F unit, if the
signal-to-noise ratio (SNR) is greater than a local SNR
criterion (LC), the corresponding mask element in the IBM
is set to 1 (target-dominant). Otherwise, the mask element is
set to 0 (interference-dominant).

When adopting IBM as the computational goal of
CASA, we can naturally formulate the speech separation
as a binary classification problem [5]. From the viewpoint
of classification, the feature selection is important. Many
features have been inspected. Those features include:
pitch-based features [8], amplitude modulation spectrum
(AMS) [9], relative spectral transform and perceptual linear
prediction (RASTA-PLP), Mel-frequency cepstral coefficient
(MFCC) and Gammatone frequency cepstral coefficient
(GFCC) [10] etc. Wang et al. [10] suggest that pitch-based
features have a good generalization in speech separation.

Pitch-based features are derived from pitch. But
extracting pitch from noisy speech is also a difficult task,
especially in low SNR conditions. Generally speaking, on one
hand, if the target voice is separated from the background,
we can obtain the pitch easily. On the other hand, speech
separation performance will get better if pitch estimation is
accuracy. Since these two tasks could benefit from each other,
speech separation and pitch extraction in noisy conditions are
considered to be a “chicken-and-egg” problem.

In this paper, we propose a supervised learning system to
deal with this “chicken-and-egg” problem more concisely.

• Pitch extraction and speech separation are boosted
alternately. (Section 2.1)

• Frame-level features are adopted, which consist of
spectral features, and pitch-based features. (Section
2.2)

• We use deep stacking network (DSN) to implement our
idea of working on the two problems (pitch extraction
and speech separation) alternately. (Section 2.3)

• Systematic evaluations show the proposed approach
produces high quality estimated binary masks and
outperforms recent systems in unmatched noisy
conditions. (Section 3)
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2. SYSTEM DESCRIPTION

2.1. System Overview

The proposed system is illustrated in Fig. 1, which includes
training stage and testing stage. In the training stage,
premixed speech and noise are utilized to construct the IBM,
which is the training target. Here we use frame-level features
as input. The features are extracted from mixed signal, which
consist of spectral features and pitch-based features (Section
2.2). The classifier is DSN (Section 2.3). To compute pitch-
based features, we use ground truth pitch in the training stage.
In the testing stage, the pitch we use is estimated iteratively by
the proposed method. Specifically, after getting an estimated
IBM via the trained classifier, we use it to extract pitch and
then update the pitch-based features. The newly updated
features are used for the next round speech separation. This
iterative process is embedded in DSN (Section 2.4).
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Fig. 1. The architecture of the proposed system.

2.2. Feature Extraction

2.2.1. Signal Decomposition

We first decompose the input signal into a T-F representation.
An input mixture sound with 16 kHz sampling rate is
decomposed by a 64-channel gammatone filter banks [11]
with center frequencies ranging from 50 Hz to 8000 Hz on
the equivalent rectangular bandwidth rate scale. The outputs
of each channel are divided into 20-ms frame length with a
10-ms frame shift. This processing converts the input signal
into a two-dimensional T-F representation, where elements in
the representation are called T-F units.

The features used in this work consist of spectral features
and pitch-based features extracted from noisy speech.

2.2.2. Spectral features

After decomposing the signal into T-F representation, we
compute the energy of T-F unit (c,m) by summing the square

of the filter responses in it, and then compress it by a cubic
root operation.

E(c,m) =

∣∣∣∣∣∑
n

g2(c,mT + n)

∣∣∣∣∣
1/3

where, c refers to the frequency channel, m refers to the time
frame. g is filter responses. And T = 160 corresponds to 10
ms frame shift. This energy matrix is called cochleagram.

2.2.3. Pitch-based features

Our pitch-based features are derived from normalized
autocorrelation functions (ACF) and envelope ACF. ACF
(A) and envelope ACF (AE) are computed as below.

A(c,m, τ) =

∑
n g(c,mT − n)g(c,mT − n− τ)√∑
n g(c,mT − n)2g(c,mT − n− τ)2

AE(c,m, τ) =

∑
n e(c,mT − n)e(c,mT − n− τ)√∑
n e(c,mT − n)2e(c,mT − n− τ)2

where, e is the envelope of g. And delay τ ∈ [0, 12.5ms].
The delay corresponds to pitch period, and the maximum
corresponds to 80 Hz pitch. The ACF is called correlogram
[11, 12], which is widely used for pitch estimation and source
separation. Envelope ACF depicts the amplitude modulation
rate in high-frequency channels [12].

Given the pitch period τm at frame m, A(c,m, τm) is a
quantitative measure of how the observed signal in T-F unit
(c,m) is consistent with τm. This measure has already been
used and proven to be effective under anechoic conditions.
To model the high-frequency channel better, we also use
AE(c,m, τm). If there is no target pitch at frame m, both
of A(c,m, τm) and AE(c,m, τm) are set to zero. The pitch-
based features we use are A(c,m, τm) and AE(c,m, τm).

In the training stage, the ground truth pitch is used which
is extracted from the clean speech using Praat [13]. And in
the test stage, the pitch is extracted by the method described
in section 2.4.1.

2.2.4. Frame-level features

To estimate the IBM, we train a classifier using the frame-
level features, which are formed by combining the unit-
level features of all channels at a frame. The frame-level
features include spectral features (E) and pitch-based features
(A, AE). In this study, the frame-level features are 192-
dimentional consisting of 64-dimension spectral features and
128-dimension pitch-based feature.

2.2.5. Pre-processing

The varieties of noise lead to a very large input feature space,
which is hard to model for learning algorithm. To make the
learning easier, we use spectral subtraction [14] to restrict the
input space as a pre-processing. Although spectral subtraction
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makes a stationary assumption about interference, the results
of our experiments show that this pre-processing still has
some positive effects on non-stationary noise.

2.3. Classifier

We use DSN [15] as the classifier in our system. DSN
provides a method to stack simple processing modules for
building deep architectures. In DSN, each module is a
perceptron followed by a non-linear transformation (seen in
Fig. 2(a)). The lower module’s output is treated as a part of
input to the adjacent higher module, as the illustration in Fig.
2(b).
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 Fig. 2. The architecture of DSN with three layers.

The non-linear transformation is a sigmoid function
σ(x) = 1

1+e−(x−ϕ) , where ϕ is bias. In this study, we tune the
bias to maximize hit minus false alarm rates (HIT-FA) on the
training set. HIT-FA [9] is a widely used assessment criteria
for speech separation. We use a grid search to find the best
bias in the range between -2 and 2 with 0.1 steps.

2.4. DSN for Pitch Estimation & Speech Separation

2.4.1. Pitch estimation with mask

The summary correlogram is computed for pitch estimation,
which is calculated as below:

S(m, τ) =
∑
c

(A(c,m, τ) +AE(c,m, τ)) · L(c,m)

where L(c,m) is 0 or 1 which is the value of the estimated
IBM at T-F unit (c,m). The pitch period of the target speech
at frame m, τm, is the lag corresponding to the maximum of
S(m, τ) in the plausible pitch range [2 ms, 12.5 ms].

Since the estimated IBM also includes unvoiced speech
which has no pitch, we distinguish the voiced and unvoiced
speech segments with a threshold related to L(c,m). If
S(m, τ) > θ

∑
c L(c,m), frame m is marked as voiced, else

marked as unvoiced. Here θ = 0.2.

2.4.2. Embedding in DSN

DSN can be viewed as a data process pipeline. Since adjacent
modules are not tightly combined, we can add some external

process to update the input to the next module. After getting
an estimated IBM, we re-estimate pitch and update the pitch-
based features using the method described in Section 2.4.1.
And then the updated features are feed into the next module.
For the lowest module, we set pitch to 0 for both training and
testing.

3. SYSTEMATIC EVALUATION AND COMPARISON

3.1. Experimental Setup

3.1.1. Dataset

We use clean speech corpus of Chinese National Hi-Tech
Project 863 corpus, which consists of 100,000 utterances
recorded by 200 speakers. The interference noise includes 16
different types of noise: n1-machine operation, n2-cocktail
party noise, n3-factory, n4-siren, n5-speech shaped noise, n6-
white noise, n7-bird chirp, n8-crow, n9-crowd, n10-babble,
n11-engine start, n12-alarm, n13-playground, n14-traffic,
n15-water, n16-wind. These noises cover a variety of daily
noises and most of them are highly non-stationary. All
signals are down-sampled to 16 kHz. We randomly select
50 utterances from a female speaker and mix them with 6
noises (n1-n6) at 0 dB to set up our training set. And another
200 utterances from the same speaker are mixed with all 16
noises (n1-n16) at -10, -5, 0, 5 and 10 dB as our test set.

3.1.2. Related Methods for Comparison

In order to systematically evaluate the proposed system, we
compare it with some other systems: GMM-based [5], DNN-
based [10] and DNN-SVM-based [10] methods. For GMM-
based method (denoted as ‘GMM’), we use a 64-components
GMM with diagonal covariance. For DNN-based method
(denoted as ‘DNN’), we use a DNN with two 200-nodes
hidden layers, which is trained by mini-batch gradient descent
method with 200 epochs for RBM pre-training and with
100 epochs for network fine-tuning. For DNN-SVM-based
method (denoted as ‘DNN-SVM’), we combine raw features
and the outputs of the last hidden layer in DNN to train a
linear SVM. All these 3 methods train a classifier for each
channel using unit-level features. The unit-level features
include 15-D AMS, 13-D RASTA-PLP, 31-D MFCC and 6-D
pitch-based features [5]. The pitch is provided by a multi-
pitch tracker [16]. The features are 65-D in total.

The proposed method (denoted as ‘Proposed’) is a DSN
with 5 basic modules. The features we used were frame-level
features with a context of 5 frames. In order to measure the
effects of our pitch updating procedure, we use ground truth
pitch and estimated pitch by [16] to replace our pitch updating
procedure. We denote the modified version of the proposed
method with truth pitch and estimated pitch as ‘Proposed-M-
T’ and ‘Proposed-M-E’ respectively.
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3.2. Experiments

3.2.1. Separation without pitch update

In this subsection, we want to show the ability of different
methods in the use of pitch information. First, the ground
truth pitch is employed for all systems. The experiment here
uses mixed utterances at 0 dB from the test set. The HIT-
FA results are shown in Fig. 3. We see that the ‘Proposed-
M-T’ obtains the best HIT-FA results on both matched and
unmatched noisy conditions, and difference between two
conditions is also the smallest. It means that the proposed
system can take the most advantage of a ground truth pitch.

Second, the estimated pitch extracted by a multi-pitch
tracker [16] is used in all systems. The results are shown in
table 1. From table 1, we can see the similar results when
using the estimated pitch. Obviously, the estimated pitch is
not better than the ground truth pitch, so the ‘Proposed-M-E’
results drop down but are still comparable with the ‘DNN-
SVM’ which is the best one except the ‘Proposed’. And the
‘Proposed-M-E’ significantly outperforms the ‘DNN-SVM’
in unmatched-noise conditions.

Matched−noise conditions Unmatched−noise conditions
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 GMM DNN DNN−SVM Proposed−M−E  

Fig. 3. Overall HIT-FA results of different methods at 0 dB
with ground truth pitch on test set.

Table 1. Performances of different methods at 0 dB.
 Methods  HIT     FA HIT-FA 

M
a

tc
h

e
d

 

GMM 78.88 31.48 47.40 

DNN 85.64 15.18 70.45 

DNN-SVM 85.29 14.13 71.16 

Proposed-M-E 84.39 13.47 70.91 

Proposed 85.00 8.12 76.88 

U
n

m
a

tc
h

e
d

 

GMM 79.02 29.69 49.33 

DNN 87.62 31.77 55.85 

DNN-SVM 87.17 28.93 58.24 

Proposed-M-E 87.94 19.41 68.53 

Proposed 87.81 11.83 75.97 

3.2.2. Separation with pitch update

In this subsection, we want to show the efficiency of our
pitch update procedure. We revisit the Table 1. The
‘Proposed’ denotes our method without any modification.
We can see: 1) The ‘GMM’ is the worst which indicates
that deep architecture is likely more suitable for the speech
separation problem than a shallow one. 2) The ‘DNN-
SVM’ outperforms the ‘DNN’, which mainly owes to the
generalization ability of SVM. 3) The ‘Proposed’ remarkably
outperforms the other comparison methods on both matched
and unmatched conditions. 4) The proposed method has good
generalization ability on unmatched conditions. There is only
a small gap between matched and unmatched conditions.

3.2.3. Generalization

The experiments described in this subsection use the whole
test set includes all 5 different SNR conditions. We examine
the generalization of separation systems on unmatched SNR
conditions. The HIT-FA results are shown in Fig. 4. From
Fig. 4, we can see that the proposed algorithm achieves the
best generalization performances at all of the SNR conditions.
It also can be observed that the HIT-FA rates of the proposed
algorithm become higher with increasing SNR. While other
comparison methods achieve the best results at 0 dB (matched
SNR condition). This is mainly because we use spectral
subtraction as a pre-processing, which restricts the input
feature space and make the modeling easier.
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Fig. 4. Overall HIT-FA performances on the different SNR
test conditions.

4. RELATED WORK

Some previous researches [5, 10] treated pitch estimation as
a preliminary work for separation. In [17], the authors treated
the speech separation and pitch extraction as a “chicken-and-
egg” problem as we do in this study. But we combine these
two problems more concisely by using DSN.

5. CONCLUSIONS AND FUTURE WORKS

In this study, we treated speech separation and pitch
extraction as a “chicken-and-egg” problem. To deal with it,
we execute speech separation and pitch extraction alternately.
We propose a classification-based algorithm and implement it
with DSN. Unlike the conventional separation methods based
on DNN directly learning the mapping from input features
to target outputs, DSN provides several mid-level separation
results. We employ these separation results to refine the pitch
estimation. As we known, pitch is very useful information
in speech separation. The experimental results show that the
proposed algorithm outperforms the conventional methods
using DNN or DNN-SVM.

As we seen, our pitch estimation method is relatively
simple. Many methods used pitch variance constraint for
pitch tracking. In our future work, we can add a tracking
process as other pitch estimation algorithm [18]. With pitch
tracking, the proposed method is promising to have better
performances in speech separation and pitch estimation.
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