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ABSTRACT

In wireless acoustic sensor networks (WASNs), clock synchroniza-
tion is crucial for multi-microphone signal processing, since clock
differences between capturing devices will cause signal drift. This in
turn severely degrades the performance of multi-microphone signal
processing. After a theoretical analysis of the effect of clock syn-
chronization, we evaluate the use of three different clock synchro-
nization algorithms in the context of multi-microphone noise reduc-
tion. Our experimental study shows that the achieved precision of
clock synchronization enables sufficient accuracy of clock synchro-
nization for the MVDR beamformer in ideal scenarios. However,
in practical scenarios with measurement noise on the parameters of
interest, time-stamp based clock synchronization algorithms get de-
graded, while signal based algorithms are still accurate enough for
the MVDR beamformer, albeit at a much higher transmission cost.

Index Terms— Clock synchronization, speech enhancement,
wireless acoustic sensor networks

1. INTRODUCTION

Wireless acoustic sensor networks (WASNs) have been proposed for
speech enhancement by means of multi-microphone noise reduction
[1, 2, 3, 4]. Multi-microphone noise reduction algorithms such as
beamforming, heavily depend on timing information as they usu-
ally employ the delay that is experienced when an acoustic signal
is observed at different positions. However, in WASNs, each node
usually has its own processor with an independent internal clock.
Employing multi-microphone noise reduction, in practice, requires
that these clocks are synchronized. Most of the multi-microphone
signal processing algorithms for WASNs (e.g., [1, 2, 3, 4]) are based
on the often implicit assumption that the internal clocks are synchro-
nized. An unsynchronized clock can cause drift of time differences
of the observed signal at the different nodes, and, as a consequence
degrade the performance of multi-microphone noise reduction.

Since clock synchronization is an important aspect for signal
processing in wireless sensor networks (WSNs), several algorithms
addressing this issue (not specifically for speech enhancement) have
been presented [5, 6, 7, 8, 9, 10]. However, most studies on beam-
forming/speech enhancement in WASNs neglect the clock synchro-
nization problem and simply assume the clocks to be synchronized.
Studies on the required precision and the applicability of such al-
gorithms in terms of data transmissions and robustness in practical
scenarios is generally lacking. In this paper we therefore present
an in-depth comparison of several clock synchronization algorithms
for distributed speech enhancement. The consequence of an unsyn-
chronized clock is a clock skew and a clock offset. To focus this
paper, we will only consider the clock skew, which causes signal

drift and results in a poor performance of speech enhancement al-
gorithms. Many algorithms for clock skew compensation employ a
series of time message transmissions [6] [7]. In [6], a joint ranging
and clock synchronization (JCS) algorithm is proposed to estimate
relative clock skews, clock offsets and pairwise distances in a WSN
using a single clock reference. This algorithm requires that the node
with the reference clock serves as a central processor, connected with
all other nodes in the network. The gossip-based clock synchroniza-
tion (GbCS) algorithm in [7] is an algorithm based on time stamps
and the randomized gossip algorithm [11]. Unlike the JCS algorithm
where the clocks of all nodes are synchronized with respect to a ref-
erence node, the GbCS algorithm synchronizes them with a virtual
clock. Thus, the GbCS algorithm synchronizes the clocks in a dis-
tributed way without the requirements of a reference clock or a spe-
cific network topology. The accuracy of these time-stamp based al-
gorithms is, generally, proportional to the number of timing message
transmissions. Another class of clock synchronization algorithms is
based on the observed signal, such as the blind sampling-rate offset
estimation (BSrOE) algorithm in [8] and the blind synchronization
algorithm in [12]. Assuming that there is a reference node in the
WASN, the BSrOE estimates relative clock skews using the phase
drift in the coherence between the observed signals of two commu-
nicating nodes. Similar to the JCS, the BSrOE requires that the node
with the reference clock serves as a central processor.

In the remainder of this paper, we present a study of the effect of
clock synchronization on multi-microphone signal processing where
each node has an individual clock. We perform theoretical and ex-
perimental investigations of the effects of clock synchronization on
the delay-and-sum (DSB) and the minimum variance distortionless
response (MVDR) beamforming using three state-of-the art algo-
rithms (i.e., the JCS, the GbCS and the BSrOE). In particular we
analyze communication cost of the three algorithms and investigate
their robustness to noise on the parameters used to synchronize the
clocks.

2. PROBLEM STATEMENT AND NOTATION

Consider a WASN comprisingN nodes randomly distributed in a
noisy environment, where each node is driven by it’s own proces-
sor with an internal clock and contains one microphone. Letyi(t)
denote a continuous-time signal observed at nodei. Assuming that
the signalyi(t) consists of a target source signalxi(n) degraded
by additive noisevi(n), a common data model ofyi(t) is given by
yi(t) = xi(t) + vi(t). The challenge for noise reduction algorithms
is to estimate the target signal from the noisy observations. With a
conventional microphone array, the speech signal can be estimated
using beamforming methods, such as the DSB or the MVDR beam-
former, since all microphones have the same clock and sampling
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rate. However, in a WASN, each node is equipped with an indepen-
dent clock oscillator. Clock differences are therefore inevitable. Let
ti denote the local clock reading at nodei, given by

ti = αit+ βi, (1)

wheret is the global time or the local time of a reference node,αi is
the clock skew andβi is the clock offset. We assume the clock offset
parameter to be known and we concentrate on the clock skew. The
clock modelti in (1) can then be simplified to

ti = αit. (2)

Without loss of generality, we assume that the first node is the refer-
ence node (i.e.,t1 = t). Based on the time model in (2), the sampling
rate at nodei is given byfsi = αifs, wherefs is the sampling rate
at a reference node (i.e.,fs = fs1 ). Let yi[n] denote the discrete-
time observed signal at time-sampling indexn. The discrete-time
signalyi[n] can be obtained by sampling the continuous-time signal
yi(t) at time n

fsi
, i.e.,

yi[n] = yi
(

n/fsi
)

, t = n/fsi and −∞ < n < +∞. (3)

Equation (3) indicates that different sampling rates cause drift of
time difference between the observed digital signals. This problem
can be solved by synchronizing sampling rates of all nodes, which
can be realized by synchronizing clock skews of all nodes.

3. ANALYSIS OF THE CLOCK SYNCHRONIZATION
PROBLEM FOR BEAMFORMING TECHNOLOGIES

In this section, we analyze the effect and importance of clock syn-
chronization on beamforming technologies. To facilitate a simple
and clear insight into the problem, we use the DSB and a synthetic
signal.

As beamforming algorithms are usually conducted in the short-
time discrete Fourier transform (DFT) domain, signals are windowed
and transformed into the frequency domain by applying a DFT. Let
Yi(f,m), Xi(f,m) andVi(f,m) denote the observed signal, the
desired signal and the noise DFT coefficient at frequency-bin index
f and discrete-time frame indexm, respectively. The speech DFT
coefficientXi(f,m) of the target source is given byXi(f,m) =
di(f,m)Si(f,m), wheredi(f,m) is the acoustic transfer function
(ATF), andSi(f,m) is the clean signal at the target location, both
with sampling ratefsi . To estimate the clean signal,Yi(f,m) can
be stacked into a vector, sayY(f,m) = [Y1(f,m), ...YN (f,m)]T ,
with [·]T the transposition of a vector or a matrix, followed by filter-
ing with W(f,m) (i.e., Ŝ1(f,m) = W

H(f,m)Y(f,m)). How-
ever, since all nodes have different sampling rates, the beamformer
performance will be degraded depending on the differences between
sampling rates.

Consider a WASN with two nodes, each with one microphone.
The sampling-rate of node1 is fs1 = fs = 16 kHz (i.e., the ref-
erence node) and the sampling-rate of node2 is α2fs. To assess
the performance of the DSB versusα2, we use the spatial directivity
patternQ(ω) of the DSB, that is

Q(ω) = d
H
d̃

(

d
H
d

)

−1

, (4)

with (·)H Hermitian transposition,̃d the ATF under sampling-
rate mismatch, andd the ATF without sampling-rate mismatch.
If there is a sampling-rate mismatch andd 6= d̃ andQ(ω) mea-
sure the amount of mismatch, which reflects the distortion that
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Fig. 1. The distortion|Ŝ(f,m)| versus time frames

the clean signal will undergo after processing by the beamformer.
In a free-field without damping (i.e.,|di| = 1), we then have

d =
[

e−jω
l1
c
fs , e−jω

l2
c
fs
]T

andd̃ =
[

e−jω
l1
c
fs , e−jω

l2
c
fs,2

]T

,

whereli is the distance from the source to theith node, andc = 340
m/s is the speed of sound. Then,Q(ω) can be expressed as

Q(ω) = cos

(

ω
l2
2c

(1− α2)fs

)

ejω
l2
2c

(1−α2)fs . (5)

Notice that damping can easily be included, but is left out here for
clarity of presentation. Equation (5) shows that|Q(ω)| is periodic
as a function of the clock skew. Ideally, for the case when there is
no clock skew (i.e.,αi = 1, ∀ i), Q(ω) = 1. Obviously, when there
is clock skew,|Q(ω)| deviates from 1 and distortions are introduced
in the spatial directivity pattern. That is, the beamformer response in
the target direction may be suppressed depending onαi.

To further assess the distortions introduced in the estimated
clean DFT coefficients, we investigate the output of the DSB when
applied to the clean input only, i.e.,Vi = 0, ∀i. In this case, we
set the clean target signal to a sinusoidal signals(t) = cos(2πνt)
with ν = 1250 Hz. Sampling this signal with the sampling fre-
quency of node1 and node2 (i.e., fs1 = fs and fs2 = α2fs),
leads to s1[n] = cos(2πν/fs) and s2[n] = cos(2π ν

α2fs
n)

with the two different frequenciesν and ν/α, respectively. Let
S1(f,m) and S2(f,m) denote the DFT of a windowed frame
of s1[n] and s2[n], respectively. Stacking these DFT coeffi-
cients in a vector, and including the delaysτ1 and τ2 due to
the signal propagation over distancesl1 and l2, respectively, we
get X(f,m) =

[

S1(f,m)e−jωf τ1 , S2(f,m)e−jωf τ2
]T

, with
τ1 = l1fs1/c andτ2 = l2fs2/c.

Let Ŝ(f,m) denote the DSB output when applying the beam-
former to the clean signals only (i.e., toX(f,m)). When there
is no clock skew, the output equals the clean signal,Ŝ(f,m) =
1
2
(S1(f,m) + S2(f,m)). However, the DSB output under clock

skew is given by

Ŝ(f,m) =
1

2

(

S1(f,m) + S2(f,m)ej2πf(1−α2)l2/c
)

. (6)

Two effects become apparent. What should be the average of the
DFT coefficientŜ(f,m) of two windowed sinusoids with similar
frequency and compensated delay such that they constructively add,
becomes the sum of the DFT coefficients of two windowed sinusoids
with a) two different frequencies, and b) a delay with respect to each
other that is not correctly compensated.

As an example, Fig. 1 shows the value|Ŝ(f,m)| with and with-
out clock skew for a fixed frequency binf = 20 (chosen as the bin
with center frequency closest toν = 1250 ) across time frames.
The blue dashed line shows the estimated|Ŝ(f,m)| when there is
no clock skew (α1 = α2) and the red solid line shows for a fixed
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α2 = 1.0032. The distortion|Ŝ(f,m)| varies periodically across
time and the distortion in̂S(f,m) is upper and lower bounded.

The above analysis and simulations show that asynchronous
clocks in WASNs can severely degrade the performance of beam-
formers. First, the delay compensations byd are incorrect, leading
to an undesired beamformer response. Secondly, at nodes with
clock skewαi 6= 1, the signal gets translated to another frequency.
Depending onαi this is audibly perceived as the sum of two speech
signals that are not aligned with respect to each other and have
different sampling frequencies. A solution is to perform clock
synchronization and/or sampling-rate offset compensation.

4. COMMUNICATION COST ANALYSIS

In this section, we make a communication cost analysis of the three
clock synchronization algorithms that we compare. These are the
JCS [6], the GbCS [7] and the BSrOE [8], which were briefly ex-
plained in the introduction. Although each algorithm has its own
requirements (e.g., the number of transmissions, the network topol-
ogy, centralized or decentralized processing, etc.), they can all be
used to solve the sampling-rate synchronization problem in WASNs
albeit at different costs and requirements.

For the analysis, we define one data transmission as the send-
ing of a scalar value from one node to another. In both the JCS and
the GbCS, clocks are synchronized by exchanging time information,
which is a scalar value of the time-stamp. In a fully connected net-
work with N nodes, the number of data transmissions of the JCS is
given by

TJ = 2K(N − 1), (7)

since allN − 1 pairs of neighboring nodes (each pair includes the
reference node and one other node) communicateK times with2
transmissions each time.

The number of data transmissions of the GbCS algorithm is

TG = 4C, (8)

with C number of iterations. At each iteration, two neighboring
nodes communicate a time message and clock skew compensation
parameter. This means twice the transmission of two variables per
iteration.

In the BSrOE, allN − 1 nodes (all nodes except the reference
node) send the DFT coefficients of their observed signals to the ref-
erence node, which serves as the central processor. Thus, the data
transmission of the BSrOE can be computed as

TB = (N − 1)Pfmax, (9)

where there areP segments of microphone signals andfmax fre-
quency bins per segment. Notice that the required number of data
transmissions of the JCS and the BSrOE given in (7) and (9), respec-
tively, consider only a fully connected network. More data transmis-
sions are required for clock synchronization when used in non-fully
connected networks as the time message information or microphone
signals need to be sent to the central processor using relay nodes.
Only the data transmissions of the GbCS given in (8) is directly ap-
plicable for randomly connected networks.

5. EXPERIMENTAL STUDY

In this section, we study the performance of the three clock synchro-
nization algorithms and evaluate their effect on the performance of
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Fig. 2. The MSE versus number of transmissions.

the MVDR beamformer in terms of instrumental speech quality and
speech intelligibly metrics.

We simulate a WASN with five fully connected nodes, and con-
sider a free-field scenario. Thus, the steering vectord is determined
by gain and delay values. The speech source consists of a30 sec-
onds speech signal sampled at16 kHz originating from the Timit
[13] database, and the noise source is a babble noise signal. All
nodes in the WASN first synchronize their clocks using one of the
three algorithms, and then process the signals in the frequency do-
main using a frame-based MVDR beamformer, with a frame length
of 32 ms and a50%-overlapping Hann window. The following pa-
rameters are used in the BSrOE. The Welch method is used with a
DFT size ofF = 4096 and75% overlap. Each segment consists
of L = 16000 samples andP = 32 segments with50% overlap
are used to estimate the sampling-rate offset, which is bounded by
emax = 800 ppm with ppm= 10−6. The frequency bins per seg-
mentfmax can be obtained asfmax =

F
2×L×emax

. The clock skew of

the five nodes are set toα = [1, 1.0001, 1.0002, 1.0003, 1.0004]T .
All simulations in this section are based on this scenario.

To assess the estimation accuracy of the clock skew, we define
the mean square error (MSE) between the estimated clock skews
α̂i of all nodes and the reference clock skewαref as MSET =
1
N

∑N
i=1 |α̂i − αref|

2. Furthermore, we use the segmental signal-to-
noise ratio (SNRseg) [4] and the short-time objective intelligibility
measure (STOI) [14] to assess the speech quality and speech in-
telligibility of the MVDR beamformer, respectively. As reference
signal in STOI and SNRseg we use the clean signal sampled by
the reference clock at the reference node. For notational conve-
nience, we denote the MVDR with perfect clock synchronization by
C-MVDR, the MVDR beamformer without clock synchronization
by E-MVDR, the MVDR beamformer with the JCS by J-MVDR,
the MVDR beamformer with the GbCS by G-MVDR, the MVDR
beamformer with the BSrOE by B-MVDR.

5.1. Clock synchronization without measurement noise

We begin with the assumption that there is no measurement noise
on the time-stamp in the JCS and GbCS, and the observed signal
used in the BSrOE is a babble noise-only. This follows the ideal
circumstances described in the original papers.

Figure 2 shows that all three algorithms can reach the same ac-
curacy of clock synchronization in terms of MSET with enough data
transmissions. The estimation accuracy of the clock skew in the JCS
and GbCS is increased with increasing number of data transmissions.
Further, the BSrOE needs more data transmissions to reach a perfor-
mance similar to that of the JCS and GbCS.

Figure 3 shows the effect of clock synchronization on the
MVDR beamformer. In Fig. 3(a), we see that the SNRseg of the
E-MVDR output is even lower than those of the input noisy signal
for global input SNRs larger than2 dB. In Fig. 3(b), it can be seen
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Fig. 4. (a) The MSE versus the noise variance on time stamp infor-
mation. (b) The MSE versus the global input SNR.

that the STOI values of the E-MVDR output are smaller than those
of the noisy input signal. This indicates that the predicted speech
quality and intelligibility of the MVDR is severely degraded without
clock synchronization. Note that to obtain absolute intelligibility
scores, the STOI output needs to be mapped using for example a
logistic function. Moreover, these results also indicate that noise
reduction performance of the MVDR with clock synchronization
(i.e., J-MVDR, G-MVDR and B-MVDR) can reach the same per-
formance as the C-MVDR, where clocks of all microphones are
perfectly synchronized with the reference clock.

5.2. Clock synchronization with noisy parameters

Next, we investigate the performance of the clock synchronization
algorithms in a realistic setup where the measurements are subject
to imperfections. For the JCS and GbCS, this means that we add
white Gaussian noise to the time-stamps with a variance that is nor-
malized by the precision of the internal clock. The system clock in
modern PCs runs at66 MHz. The minimum difference between two
time stamps is thus1/(66 × (106)). The variance on the measure-
ment noise is then given by66×106×σ2, withσ2 the variance of the
white Gaussian noise process. Since the performance of the JCS and
GbCS depends on the number of transmissions, we use for both algo-
rithms the same amount of400 data transmissions. For the BSrOE
we use a noisy speech signal instead of the pure noise. The noisy
signal consists of a speech signal degraded by additive babble noise
at several input SNRs. Note that the BSrOE requires much more
data transmissions than the other two reference algorithms, namely
20480.

In Fig. 4(a), the MSET for both the JCS and the GbCS is seen
to increase with increasing measurement-noise variance. In addi-
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tion, the results show that the MSET of the JCS increases slower
than those of the GbCS. This is reasonable, since the time model in
the JCS can take measurement noise of time-stamps into account,
and the clock parameters in the JCS are estimated by minimizing the
least squares norm of the measurement noise of time-stamps, while
the time model in the GbCS assumes that there is no measurement
noise on the time-stamps. The JCS shows a better estimation ac-
curacy of the clock skew than the gossip based algorithm. In Fig.
4(b), the MSET of the BSrOE is slightly increased with increasing
global input SNR, which indicates that the effect of the SNR of the
observed signal on the estimation accuracy of the BSrOE in terms of
MSE is small, around1 dB in this SNR range.

To illustrate the performance of the MVDR beamformer in the
situation with measurement noise on the time-stamp, we investigate
the SNRseg and the STOI of the MVDR output of reference node
1 versus the normalized noise variance. The global input SNR of
the signal at node1 is −2.5 dB. In Figs. 5(a) and 5(b), both the
SNRseg and the STOI of the J-MVDR and the G-MVDR are de-
creased with increasing noise variance on the time stamps. Although
the B-MVDR uses the noisy speech signal for clock synchroniza-
tion, it reaches the same performance as the C-MVDR, since the
B-MVDR is a signal-based algorithm, not sensitive for time-stamp
noise. The performance of the J-MVDR decreases slower than that
of the G-MVDR. This is consistent with the simulation results in
Fig. 4. Moreover, for small noise variances, the J-MVDR reaches
the same performance as the C-MVDR, while this is at a much lower
transmission cost than the B-MVDR.

6. CONCLUSIONS

In this paper, we first analyzed effects of clock synchronization on
the DSB with a synthetic signal. Then, we analyzed communication
cost of three different clock synchronization algorithms. From this,
it follows that the BSrOE requires a significantly larger amount of
transmissions than the JCS and the GbCS approaches due to the fact
that it is signal based. To which extent this high data-transmissions
is a problem for distributed signal processing, depends on the pro-
cessing in the subsequent steps. The experimental study has shown
that the accuracy of clock synchronization of the three algorithms
is sufficient for the MVDR beamformer under ideal circumstances.
In scenarios with measurement uncertainty or noise, the output of
the MVDR with the JCS and the GbCS degrades, but the MVDR
with the BSrOE reaches the same performance as the centralized
MVDR beamformer. For small amounts of measurement noise, the
JCS gives similar performance as the BSrOE, but, at a significantly
lower amount of data transmissions.
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