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ABSTRACT

To approximate the speech quality of a given speech enhance-

ment system, most of the existing instrumental metrics rely

on the calculation of a distortion metric defined between the

clean reference signal and the enhanced signal in the spectral

amplitude domain. Several recent studies have demonstrated

the effectiveness of employing a phase modification stage in

single-channel speech enhancement showing positive impact

brought by modifying both amplitude and phase in contrast to

the conventional methods where the noisy spectral amplitude

is only modified and noisy phase is used for signal recon-

struction. In this work we present two contributions; First we

study the reliability of the existing instrumental metrics for

performance evaluation of phase-aware methods, and second

we propose novel phase-aware instrumental metrics and eval-

uate their reliability in terms of predicting the perceived qual-

ity achieved by the phase-aware methods. Our objective and

subjective evaluations demonstrate that PESQ and the pro-

posed phase deviation metric perform as reliable speech qual-

ity estimators following the subjective results.

Index Terms— Phase estimation, perceived speech qual-

ity, phase-aware speech enhancement, subjective listening.

1. INTRODUCTION

The task of quality estimation of speech enhancement systems

is of great importance in the development of new methodolo-

gies e.g. in mobile communication devices and hearing aids.

The ultimate success of a method in these applications highly

depends on a robust performance in a noisy environment and

on how well it handles the background noise while balanc-

ing a trade-off between the remaining residual noise and the

amount of introduced speech distortion. To balance such a

trade-off, it is crucial to find a fast and reliable performance
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Fig. 1. Conventional (dashed box) versus the proposed evaluation

methodology for speech quality estimation.

evaluation tool. Figure 1 demonstrates the configuration for

the conventional instrumental metrics used for performance

evaluation in speech enhancement [1, Ch. 10].

Although many different instrumental metrics have been

proposed, still their reliability has only been demonstrated for

limited scenarios including spectral amplitude-only enhance-

ment. As an example, PESQ was shown as a reliable met-

ric to estimate the perceived quality of speech enhancement

methods [2]. However, the studied methods only modified

the noisy spectral amplitude and copied the noisy phase at the

signal reconstruction stage.

Therefore, in this paper, we address two questions; First

the reliability of PESQ and other existing instrumental met-

rics to predict the subjective results achieved by phase-aware

enhancement schemes where the spectral phase is also mod-

ified (in contrast to the conventional amplitude enhancement

schemes). This is inspired by the recent works [3–13] show-

ing improvement in the perceived speech quality by modifica-

tion of the noisy phase. As our second contribution, we pro-

pose new phase-aware instrumental metrics to emphasize on

the phase importance in quality estimation of a phase-aware

speech enhancement method. Throughout objective and sub-

jective evaluations in various noise scenarios, we evaluate the

reliability of the metrics in predicting the subjective results.

The rest of the paper is organized as follow. Section II

presents an overview of the conventional metrics. Section III

presents the problem definition as the performance evaluation

of phase-aware speech enhancement. Section IV presents our

proposed metrics for phase-aware performance evaluation in

speech enhancement. Section V presents the subjective lis-

tening results and statistical analysis to find the correlation to

the studied metrics. Section VI concludes on the work.
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2. CONVENTIONAL METRICS

In general, one can divide the existing quality metrics into

three groups: SNR-based, speech codec metrics and source

separation metrics. Some examples for the SNR-based met-

rics are: global SNR (GSNR) [14], segmental SNR (SSNR)

[1] and frequency weighted SNR (fwSNR) [15]. The SNR-

based metrics emphasize on a sample-by-sample comparison.

The metrics in the second group were originally proposed to

evaluate the performance of a speech codec. Some exam-

ples are: log-likelihood ratio (LLR) [16], cepstral distance

(CEPS) [17], Itakura-Saito distance (ISa) [18] and perceived

speech quality estimation (PESQ) [19]. There the basic idea

was to assume that speech follows an auto-regressive process

within the short time frames modeled by linear prediction

with some psycho-acoustical model on top as it was taken

into account in PESQ. The types of distortions quantified by

these metrics when used in speech coding are however differ-

ent than those introduced by a speech enhancement method.

For example, the original waveform is distorted due to quan-

tization errors introduced by code excited linear prediction

(CELP) while in speech enhancement, in contrast, musical

noise as well as speech distortion are common.

The last group is focused on evaluating the performance

of a separation algorithm applied on audio mixed signals.

A commonly used metric is blind source separation evalua-

tion (BSS EVAL) [20] which consists of three different SNR-

based metrics: Signal-to-Distortion Ratio (SDR), Signal-to-

Interference Ratio (SIR) and Signal-to-Artifact Ratio (SAR).

3. PROBLEM DEFINITION AND MOTIVATION

3.1. Notations and Problem Definition

Let y(n) = x(n) + v(n) be the noisy signal with x(n) and

v(n) denoting the clean and noise signals, respectively. The

noisy signal is processed by a speech enhancement algorithm

producing the speech enhanced signal x̂(n). Let Y c(k, l),
Xc(k, l), X̂c(k, l) and V c(k, l) be the STFT transforms for

noisy, clean, enhanced speech and noise signals, respectively,

with k and l as the frequency and time indices. The complex

spectrum Xc(k, l) consists of spectral amplitude and spectral

phase Xc(k, l) = X(k, l)ejφx(k,l) with X(k, l) as the ampli-

tude and φx(k, l) = 6 Xc(k, l) as the spectral phase.

Figure 1 shows the difference between the conventional

performance evaluation relying on the spectral amplitude dif-

ference (X(k, l) versus X̂(k, l)) and our proposed metrics re-

lying on the spectral phase values i.e. φx(k, l) and φ̂x(k, l).

3.2. Why Phase-Aware Metrics?

Here we address the incompleteness of the existing instru-

mental metrics in the speech quality estimation of a phase-

aware method. To this end, we present a counterexample to
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Fig. 2. Counter example: (top) spectrogram (bottom) group

delay plots shown for (left) noisy phase unprocessed signal,

(middle) phase-enhanced signal using STFTPI [13], (right)

clean signal for white noise at 0 (dB).

demonstrate why a new phase-aware metric is required. Fig-

ure 2 demonstrates the outcome for phase-enhancement us-

ing STFT phase improvement (STFTPI) recently proposed in

[13]. The method relies on phase reconstruction at harmonics

given the fundamental frequency estimate. The signal com-

ponents between harmonics are entirely removed while strict

harmonic structure is enforced across frequency. The im-

provement in PESQ and fwSNR is obtained at the expense of

buzzy speech quality, also reported in [12,21]. The buzzyness

is visible by comparing the harmonic structure in the phase-

enhanced signal versus the clean original signal as shown in

Figure 2. A similar trend is visible in the group delay plot.

This counter example and the observed improvement in the

existing metrics (PESQ and fwSNR shown in Figure 2) moti-

vates us to address the following two research questions:

1. how much the existing metrics (PESQ, fwSNR, · · · )

correlate with subjective results for phase-aware speech

enhancement,

2. whether some new phase-aware metrics could outper-

form the existing ones in terms of predicting the sub-

jective listening results.

4. PROPOSED PHASE-AWARE METRICS

4.1. Group Delay (GD)

The group delay is the negative derivative of the spectral

phase with respect to frequency and in the discrete domain is

defined as

τ(k) = −∆kφ(k, l) = φ(k, l)− φ(k − 1, l). (1)

As summarized in [5], GD has been reported useful in vari-

ous speech processing applications. As our phase-aware in-

strumental metric, here we propose the following distortion

metric:

dGD =
(

cos (−∆kφx(k, l))− cos(−∆kφ̂x(k, l))
)2

(2)

217



which was first used in [9] and presented in more detail in

[6] to resolve the ambiguity in phase estimation for single-

channel speech enhancement. To make the distance metric

invariant to module of 2π and to avoid wrong error calcula-

tions due to the periodicity of phase, in the proposed metric,

we employed the cosine function. A similar treatment was

employed for phase-based estimators studied in [22] as well

as in deriving an estimator for the spectral phase in [23].

4.2. Instantaneous Frequency Deviation (IFD)

In [24,25], the concept of Instantaneous Frequency Deviation

(IFD) was introduced as a useful interpretation of the short-

time spectral phase defined as the first-order time-derivative:

IFDφ(k, l) =
1

2π
(φ(k, l)− φ(k, l − 1))− k. (3)

It was shown that IFD carries information about the vocal-

tract excitation [26] and that it is a useful representation for

pitch estimation or automatic speech recognition as it resolves

the formant frequencies [24, 27].

As our second phase-aware instrumental metric, here we

propose the following distortion metric:

dIFD =
(

cos (IFDφx
(k, l))− cos

(

IFD
φ̂x

(k, l)
))2

(4)

which was recently used in [6] to resolve the ambiguity in

phase estimation for single-channel speech enhancement.

4.3. Phase Deviation (PD)

A geometric representation of the phase deviation concept is

shown in Figure 3. It is defined as the deviation between the

noisy and clean phase spectra given by:

φdev(k, l) = φy(k, l)− φx(k, l). (5)

Vary first defined phase deviation in [28] and the concept was

later employed in [7] for phase estimation and [29] for joint

noise reduction and echo cancellation. Here, we propose to

employ the PD concept as a new distortion metric, defined as:

dPD =
(

cos(φdev(k, l))− cos(φ̂dev(k, l))
)2

(6)

where we define φ̂dev(k, l) = φy(k, l) − φ̂x(k, l) as the esti-

mated phase deviation given the estimated speech phase.

4.4. Mean Square Error (MSE) of Phase

In estimation theory, the mean square error (MSE) is com-

monly chosen to quantify the amount of estimation error in-

troduced by an estimator [30], and is described as below:

dMSE =
(

cos(φx(k, l)− φ̂x(k, l))
)2

(7)

Fig. 3. Geometric representation for the single-channel

speech enhancement problem; showing noisy, clean and noise

complex spectra denoted by Y c(k, l), Xc(k, l) and V c(k, l),
respectively. The phase deviation φdev is shown as the phase

difference between the clean and the noisy speech signal.

5. RESULTS AND DISCUSSION

5.1. Experimental Setup

As the test material, we selected 50 utterances from the GRID

corpus [31] composed of male and female speakers downsam-

pled to 8 kHz. White and babble noise were selected from

NOISEX-92 [32] and were added to the clean speech sig-

nals at SNRs of 0, 5 and 10 dB. The noisy files (unprocessed,

UP) were processed by four speech-enhancement algorithms:

Conventional (C) (MMSE-LSA [33]) , Conventional + Clean

phase (C + clean), Conventional + Phase-Enhanced (PE) [3]

and Phase-Aware (PA) [7]. Including the unprocessed files,

we had an overall number of 1500 speech files in the analysis.

The results of the instrumental metrics were averaged over all

utterances for each method and SNR.

5.2. Subjective Listening Test

The subjective listening test was conducted in a quiet room.

AKG K-240 Studio Headphones and a Hoontech DSP24Value

24Bit/96kHz soundcard as audio interface were used. Fol-

lowing the MUSHRA standard [34], we included a Hidden

Reference as well as an Anchor (defined as the 2.5 kHz low-

pass filtered reference signal). A panel of 11 listeners were

recruited for the subjective test, all experienced listeners at

the Graz University of Technology. For each noise type and

SNR two randomly selected utterances were presented to

each participant.

Figure 4 shows the Mean Opinion Scores (MOS) and 95%

confidence intervals differentiated in terms of noise type and

SNR. For all noise types and SNRs, similar rankings were

observed where the PA method performed best followed by

the C + Clean phase method. The PE method was ranked as

the third with a short gap with respect to the C method. The

UP, as expected, had the lowest ranking. T-tests were con-

ducted to justify the significance of these rankings. Except

between the C and the PE method, all other rankings were

significant with respect to each other with p < 0.05. How-

ever, PE outperforms C significantly for white noise scenario
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PESQ [19] ISa [18] GD [proposed] IFD [proposed] PD [proposed] MSE

ρ σ τ ρ σ τ ρ σ τ ρ σ τ ρ σ τ ρ σ τ

Noise=Babble 0.87 0.07 0.77 0.87 0.07 -0.73 0.84 0.07 -0.70 0.84 0.07 -0.68 0.91 0.06 -0.77 0.83 0.08 0.70

Noise=White 0.86 0.07 0.79 0.91 0.06 -0.75 0.96 0.04 -0.87 0.89 0.07 -0.81 0.94 0.05 -0.89 0.90 0.06 0.81

SNR=0(dB) 0.91 0.05 0.91 0.89 0.05 -0.73 0.81 0.07 -0.69 0.87 0.06 -0.87 0.92 0.05 -0.87 0.87 0.06 0.78

SNR=5(dB) 0.95 0.04 0.91 0.83 0.07 -0.69 0.83 0.07 -0.73 0.92 0.05 -0.69 0.93 0.05 -0.87 0.90 0.06 0.70

SNR=10(dB) 0.93 0.05 0.91 0.92 0.06 -0.78 0.91 0.06 -0.78 0.88 0.07 -0.82 0.90 0.06 -0.82 0.86 0.08 0.78

(SNRs, Noise) 0.86 0.07 0.73 0.86 0.07 -0.68 0.87 0.07 -0.71 0.86 0.07 -0.71 0.91 0.06 -0.77 0.86 0.07 0.74

Mean 0.90 0.06 0.84 0.88 0.06 -0.73 0.87 0.06 -0.75 0.88 0.07 -0.76 0.92 0.06 -0.83 0.87 0.07 0.75

Table 1. Statistical analysis of top performing metrics for different noise, SNRs and averaged over both SNRs and noise.
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Fig. 4. Mean Opinion Scores (MOS) of the MUSHRA test

(top) white (bottom) babble shown for eleven participants.

at SNR = 0 (dB) as well as at SNR = 5 (dB) with p = 0.077.

Another observation is that the overall perceptual quality

improvement between the UP and the PE method is more pro-

nounced in white noise than babble. In contrast, the quality

improvement achieved by the C method is approximately the

same for both noise types. This is due to the fact that blind f0
estimation [35] works better in white noise, leading to a more

accurate estimated phase by the PE method [3, 36].

5.3. Correlation Analysis

For performance evaluation, we used the same approach as

presented in [37] where the Pearson’s correlation coefficient

(ρ), the normalized root-mean-square error (σ) and Kendall’s

Tau (τ ) were used as three figures of merrit. We followed

the same procedure in [37] by applying two different logistic

functions to account for the nonlinear relationship between

the objective and subjective scores.

Figure 5 shows the results separated by the noise types

and ranked by the correlation increasing from left to right.

The proposed phase-aware metrics performed better than the

conventional ones: fwSNR, CEPS, LLR, GSNR and SAR.

The PD metric outperforms all the conventional metrics in-

cluding PESQ in both noise scenarios. The GD metric is

the most reliable predictor in white noise. This could be ex-

plained due to the robustness of group delay representation

against additive white noise as reported in [38].

To further evaluate the reliability of the results, we con-

ducted another correlation analysis at each SNR as well as on

the whole data (labeled as (SNRs, Noise) in Table 1). In Ta-

ble 1 only those metrics with a correlation ρ > 0.8 are shown.

The metrics which fulfilled this constraint were the proposed

phase-aware metrics as well as PESQ and ISa among the con-

ventional metrics. To get the last row (labeled as Mean), we

averaged the correlation coefficients. The PD metric showed

the highest correlation (ρ = 0.92) on average followed by

PESQ (ρ = 0.9). Furthermore, the PD metric performed most

reliable as it showed a more stable ρ across noise types. Fol-

lowing the correlation analysis in [39], the ranking of the pro-

posed PD metric on (SNRs, Noise), as labeled in Table 1, is

significant versus global SNR, SSNR, fwSNR, BSS-EVAL,

MSE, LLR, IFD and CEPS.
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categorized to (top) babble (bottom) white noise.

6. CONCLUSION

In this paper, we addressed the following two open questions;

which existing instrumental metrics reliably estimate the per-

ceived quality of the enhanced speech when spectral phase

is modified and whether a new phase-aware metric would

outperform existing ones in terms of predicting subjective

results. We quantified the correlation between instrumental

metrics and human listening results via conducting statistical

analysis. Results showed that both PESQ and the proposed

phase deviation metric are reliable estimators of the perceived

speech quality when the noisy spectral phase is processed

apart from conventional amplitude enhancement schemes.
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