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ABSTRACT

This paper investigates a parametric gain approach toestiginnel
noise reduction in the frequency domain. In comparison thigttra-
ditional parametric Wiener gain, the major novelty of thiegented
approach is that the parametric gain is formulated to eséirttee
noise by using the mean-squared error (MSE) between the ants
the noise estimate. The enhanced signal is then obtainedlby s
tracting the noise estimate from the noisy observationaigiiVe
show that this new method is more practical to implement amd ¢
produce better noise reduction performance as comparéu tind-
ditional parametric Wiener filtering techniques if the ardé the
parametric gain is not equal to 1. If the order is 1, the pateme
gain is similar to the traditional Wiener gain. Simulati@sults are
presented to illustrate the properties of this new approach
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new method is more practical to implement and can produderbet
noise reduction performance as compared to the traditaramet-
ric Wiener filtering techniques if the order of the paranwegain is
not equal to 1. If the order is 1, the parametric gain is simiahe
traditional Wiener gain.

2. SIGNAL MODEL AND PROBLEM FORMULATION

The noise reduction (or speech enhancement) problem eoeslich
this paper is one of recovering the desired sign@l), ¢ being the
time index, of zero mean from the noisy observation (micorgh
signal) [1, 3]:

y(t) = (t) +v(1), @)

Index Terms— Noise reduction, speech enhancement, singlewhere the zero-mean random process) is the unwanted additive

channel, frequency domain, Wiener gain, parametric gain.

1. INTRODUCTION

Noise is ubiquitous and can cause significant degradatispeech
quality and intelligibly in speech communication systeifsreduce
the impact of the noise, noise reduction (or speech enhasmtgis

needed to “clean” the noisy signal before it is stored, casped,
transmitted or played back [1-4]. There are many differeayav
to achieve noise reduction, including filtering techniqugsectral
restoration, model based methods [5-16], etc. Howeverpbtige

most widely used methods so far is the gain approach in the fre

guency domain or more precisely in the short-time Fourgmsfor-
m (STFT) domain. In such a method, the noisy signal that iseto b
enhanced is partitioned into small frames and transformtxithe
frequency domain using the STFT. Then a gain is estimatedpnd
plied to the noisy speech spectrum in each subband to achigse
reduction. Many different algorithms were developed over last
three decades to estimate the noise reduction gain [10-716}se
methods differ from each other in the form of the gain as ationc
of the signal statistics. But they all share a common bass, the
gain is formulated to directly estimate the clean speeahgusiatis-
tics of the observed noisy signal and estimated noise ttatis

In this paper, we investigate a parametric gain approachisen
reduction. Unlike the traditional techniques that estentiite de-
sired, clean speech directly, we formulate the problem aesstd
mate the noise first, and the speech estimate is then obtayrsab-

tracting the noise estimate from the noisy signal. We shawtthis
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noise, which is assumed to be independent@f. All signals are
considered to be real, stationary, and broadband.

In the frequency domain, at frequency indgx(1) can be ex-
pressed as

Y(f) =X+ V), )

whereY (f), X(f), andV (f) are the frequency-domain represen-
tations ofy(t), z(t), andwv(t), respectively. Since(t) andwv(t) are
independent and zero mean by assumption, the variancé ofis

oy (f) = E[IY(NI?] = ox(f) + ov(f), ®)

where E[-l denotes mathematical expectation, afd(f) =
E[|X(f))°] andgv (f) = E [|V(f)|*] are the variances oX (f)
andV (f), respectively.

The objective of single-channel noise reduction in thedestpy
domain is then to find from the observation a “good” estimdte o
X (f) in the sense that the additive noise is significantly reduced
while the desired signal is not substantially distorted.

Traditionally, an estimate of the desired signal(f), is ob-
tained by applying a gainf (f), to the observationY'(f). The
minimization of the corresponding mean-squared error (M$Ehis
well-known concept leads to the classical Wiener gain [3]:

_ ¢x(f) _ iSNR(f)
D =50 ~ TreNR() @
where
. _ox(f)
SNR(D = 5017 ©)
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is the narrowband input signal-to-noise ratio (SNR). Itleac that
this gain is always real arl< Hw(f) < 1. Therefore, the optimal
estimate ofX (f) in the minimum MSE sense is

Xw(f) = Hw(f)Y(f) = D Hw(f) Y (£)], ()
—1 andéy (f) is the phase

where; is the imaginary unit witty?
of Y(f).

Alternatively, we can also estimate the noise sighé(f), by
applying a gain,H'(f), to the observationY (f). By using the
MSE criterion, we easily find that the optimal gain

~_ov(f)

1

D=5 ~ Tr IR "
and the corresponding estimator is
Vv (f) = Hiy (H)Y (/). ®)
As a consequence, the optimal estimateXdff) is
X () =Y () = V() = Xw(f). ©)

Obviously, the two methods are strictly equivalent. Howewéen

a parametric gain is used, the two methods may generateetiffe
performance as will be discussed in the next section. Giydtee
second technique is preferred in practice becati$g(f) [which
depends explicitly on the statistics Bf( f) andY (f)], is easier to
estimate tharflvw (f) [which depends explicitly on the statistics of

X(f) andY' (f)]

is the equivalent gain for the estimation®f( ) from Y (f).
We define the error signal between the signal of interesttsnd i
estimate as

Ealf) = IV(NHI* = Ha ()Y (NI, (15)
from which we deduce the parametric MSE criterion:
J [Ho ()] = E[€2())] (16)

= dwia(f) + HZ(Pbv1a(f) = 2HL(F)dviv)a(f),

wheredyv .o (f) = E [[V(£)**], ¢vi.a(f) = E [[Y(f)]**], and
dviyia(f) = E[VOI" Y (H)I7].

The minimization ofJ [H/,( f)] with respect toH,(f) leads to
the optimal gains for the estimation Bf( f) and X (f), respectively,
i.e.,

opy = Ovivie(f)
Hool )= 250 2P an
and
Hoolf) = 1— 3/Hio(f) = 1— 3/ QWiiall) =g

¢\Y\,a(f) .

The quantityg|y| . (f) can be easily estimated from the observa-
tions while the quantity| vy, (f) can be estimated from the com-
ponents of the noise during silences [even with a delay betwe
Y(f) and V(f)] since no phases are involved in the expression.

It can be shown [3] that the broadband output SNR with thesypstituting (17) into (16), we find that the minimum MSE is

Wiener gain, which is defined as
By (Dox (Hdf
By (Dev (Ndf

is always greater than or equal to the broadband input SNiRhwh
is given by

oSNR (Hw)

(10)

(11)

However, the narrowband output SNR with the Wiener gain-is al
ways equal to the narrowband input SNR.

3. PARAMETRIC APPROACH

In this section, we propose to estimaté(f)|*, with a > 0 (the
parametric order), by applying a gaifi,, (f), to the modified obser-
vation, |Y'(f)|*. SinceH,(f) |Y (f)|” is an estimate ofV (f)|“,
then a natural estimate &f(f) is

Va(f) =™ D [H(H Y (NI = VEDY (). (12)
We deduce that an estimate 8f( f) is

Xa(f) =Y(f) = Valf) (13)
= [t - ¥HD| Y (1)
= Hao(H)Y (f),
where
Ha(f) = 1= $/HL(f) (14)
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, B  Avivie(d)
I [Haol£)] = dvialf) [1 FvaDoman| 9
=dvialf) [L =Y vialf)]
where
2
Yviy)elf) Pviivielf) (20)

- Ovia(Hoy)alf)

with 0 < VfV\\Y\,a(f) < 1. Obviously, the optimal estimate of
X (f) in this context is

Xeo(f) = Ha ol )Y (). (1)
We can expresél. o(f) as a function ofyv |y, (f), i.e.,
Hoolf) =1~ ﬂvw,am uel @)

We observe from the previous equation that Ha o(f) < 1.

4. PERFORMANCE MEASURES

In this paper, we adopt the output SNR, the noise reductictorfa
the speech distortion index, and the perceptual evaluafispeech
quality (PESQ) [19, 20] as the the performance measuresnfoba
jective evaluation of the parametric gain approach preskint the
previous section.

The narrowband and broadband input SNRs were already de-
fined in Section 2. Since we deal with gains, the narrowbarpubu



SNR is equal to the narrowband input SNR. The broadband input R ‘7

SNR is defined as

[ HL(Déx(N)df
T [ HZL(Hov (Hdf

0SNR (Ha,0) (23)

The noise reduction factor quantifies the amount of noise re-

jected by the filtering process [18]. The narrowband anddizaad
noise reduction factors are defined respectively as [4]

__ vl 1
{nr [Ha,o(f)] - Hgé’o(f)qﬁv(f) N I_Ig,o(f)7 (24)
 [yev(ndf
Enr (Hoo) = Jr H o(F)év (f)df )
[y ov(£)df

T T ov(D) X Gart Hao(P]df

We always havé,, [Ha,o(f)] > 1 and&un (Ha,o) > 1.

The gainH. . (f) adds distortion to the desired signal( f). In
order to evaluate the level of this distortion, the so-chfipeech re-
duction factor was introduced, which is defined as the vagani the
desired signal over the variance of the filtered version efdésired
signal [4]. For the problem described in this paper, theavaand
and broadband speech reduction factors can be defined as

__ox(p) 1
GrllecU V=2 o) ~ Wy @
 [rex(Ddr
S tHee) = T2 (Pox (dF “
Sy ox (F)df

T T ox (D) X & Han (D

We see thafs: [Ha,o(f)] > 1 and&s (Ha,o) > 1.
Itis clear that we always have

oSNR (Ha,o) _ gnr (Ha,O)
iISNR & (Hao) '

(28)

Another useful performance measure is the speech digtartio
dex defined as

_ E[|Hao(NX() = X()]

Usd [Ha,o(f)] - (,bX (f) (29)
= [Hao(f) =17
in the narrowband case and as
[y E[Hao(HNX(f) = X ()] df
v (M) = T, ox (N e
Jpex(f) X vea Hao(£)] df
- [ ox(Hdf

inthe broadband case. It can be checked@hdtvsq [He,o(f)] < 1
and0 < Vsd (Ha,o) <1
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Fig. 1. Broadband input and output SNRs of the parametric gain for
different orders over time in different noise cases: (a}e/@iaussian
noise, (b) car noise, and (c) NYSE noise. The time-domaintinp
SNRis10 dB.

5. SIMULATIONS

We have formulated the single-channel parametric gaincaopr to
the problem of noise reduction in Section 3. In this sectiomstudy
the performance of this approach through experiments. Wi,

we attempt to address two fundamental questions: 1) why arie-w
terested in the parametric gain approach instead of usegvibner
gain and 2) why do we want to estimate the noise instead ofehe d
sired speech directly?

The clean speech signals are recorded from a female and a male
talker in a quiet office room. We consider three types of noese
white Gaussian random process, a babble noise signal extand
a New York Stock Exchange (NYSE) room, and a car noise signal
recorded in a sedan running 50 MPH on a highway. All the signal
s are 30 seconds long and the sampling frequency is 8 kHz. The
noisy signal is obtained by adding noise into the clean dpe&th a
specified input SNR level.

To implement the parametric gain, the time domain signads ar
partitioned into overlapping frames (the frame sizd 28 and the
overlapping factor i75%) with a Kaiser window, and then trans-
formed into the STFT domain using a 128-point FFT. The noise
variance ¢|v| . (f) and |V(f)|* are blindly estimated from the
noisy speech signal using a variant of the minimum contdotk
cursive average (MCRA) algorithm [10]. The quantityy| o (f)
ande|v|y|,«(f) are computed using (f) and the estimated noise
spectrum and noise statistics with a recursive method wtheréor-
getting factor is set to 0.6. After enhancement, the sigaasrans-
formed into the time domain using the inverse STFT with anrlaye
add method.

In the first experiment, we examine the performance of tha-par
metric gain method in different noise cases. Figure 1 pletitoad-
band input and output SNRs in three different noise caseggwh
Gaussian, car, and NYSE), where= {0.5, 1, 2}. The time-domain
input SNR, which is calculated using a long term averageQisl-1
B. We see that the parametric gain can improve the broadbsifRd S
significantly in all three studied cases. We also see thaitlut S-

NR deceases as the valuecoincreases. So, the value @fplays an
important role on the noise reduction performance. To ssetbre
clearly, we carried out a set of experiments. Figure 2 pletrtbise
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es. The highest PESQ score is obtained whes approximately 2
in the condition of white noise with 0-dB input SNR. This amse/
the question why we are interested in the parametric gairoaph.
Briefly, the parametric gain approach can yield better nogskeic-
tion performance as compared to the Wiener gain if the paeme
is properly chosen.

In the second experiment, we study the difference betweten es
mating directly the desired signa{;( /), and estimating directly the
noise. Following the same principles of Section 3, we caiveéhe
gain to directly estimateX (f)|“, i.e.,

_ o Oix(v]e(f)
d)\Y\,a(f) ’
where

Gixivialf) = EIX(DI* Y (D]
=E[(Y(DP+ V(P =2v(Hy (D) IY(HIY]. (32)

Gao(f) (1

Fig. 2. Performance of the parametric gain as a function of the paSinceX (f) is not known in practice, it is difficult to directly esti-

rametera in white Gaussian noise with an input SNR of 0 dB: (a)
noise reduction factor, (b) speech distortion index, andPESQ s-
core.

reduction factor, speech distortion index, and the PES@esas a
function of « in white Gaussian noise with an input SNR of 0 dB.
Note that the broadband noise reduction factor and spestiriitbn
index plotted in this figure are the average results ovehalffames.

mate ¢ x|y}, (f). Generally, however, it is assumed that we can
estimatg V' (f)|? and¢v (f). Substituting these noise statistics into
(32), one can compute the gain in an indirect way.

Figure 3 plot the PESQ scores for enhanced signal using
Ga,o(f) and Hq o(f). One can see that the PESQ score with the
use of Ha o (f) is higher than that of using/o..(f). This justifies
the reason why we need to estimate the noise instead of thredles

The PESQ score is computed as follows. For each speaker (e haSPeech directly. It is observed that the valueaofo produce the
a male and female speaker), the PESQ score is computed by cofgfgest PESQ score changes with the input SNR. So, in peadtic

paring the enhanced signal with the original clean speehbhb.fihal

would be better if the value ef is determined adaptively according

PESQ score is obtained by mapping these two scores to the PES@the SNR condition, which will be our future work.

listening quality objective score [20].

As we can see from Fig. 2, both the noise reduction factor and

speech distortion index decrease as the value ofcreases. The
underlying reason can be explained as follows. The parg&netr
gain in (18) is an increasing function of It can be checked that
lima—o Ha,of) = 0 andlima— 4o Ha,o(f) = 1. Therefore, if

6. CONCLUSIONS

In this paper, we studied the single-channel noise redugtioblem
in the frequency domain with a parametric gain approachte&us
of directly estimating the desired speech signal, we foateal the

a = 0, all the noise is removed, and so is the speech signal, whichroblem as first to estimate the noise and then the speechagsti

means that both the noise reduction and the speech dist@t®
maximized. Ifa — +oo, there will be neither speech distortion or
noise reduction. When the value @fincreases, the parametric gain
will add less speech distortion, but also reduce less ndiseom-
parison, the PESQ score is not a monotonic function witheetsp
to a. It first increases and then decreases as the valueiméreas-

g T T
/: By estimating V' (f)|*
O: By estimating| X (f)|* |
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Fig. 3. PESQ score as a function of the parametén white Gaus-
sian noise. The two dashed black lines show the PESQ scohe of t
noisy signal in 0 dB and 10 dB, respectively.
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is obtained by subtracting the noise estimate from the r&igpyal.
The optimal parametric gain in the minimum MSE sense was de-
rived to obtain the noise estimate. With experiments, wesiitated

the advantage of using the parametric approach over thitioreal
Wiener gain. It was also demonstrated why we should forrautat
problem as estimating the noise first instead of the desjyedcs.

7. RELATION TO PRIOR WORK

Various noise reduction methods have been developed owgratst
several decades [1]- [18], among which the gain approachen t
short-time Fourier transform (STFT) domain is by far one o t
most widely used methods in practice. Traditionally, thizdgsfor-
mulated to directly estimate the desired clean speech uwmiigy
and noise signal statistics. In this paper, we reformullageprob-
lem as one of estimating the noise first; and then the speéialiets

is obtained by subtracting the noise estimate from the nsigyal.
We show that this new method is more practical to implemedt an
can produce better noise reduction performance as compatbd
traditional parametric Wiener filtering techniques if threler of the
parametric gain is not equal to 1. If the order is 1, the pateame
gain is similar to the traditional Wiener gain.
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