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ABSTRACT

This paper investigates a parametric gain approach to single-channel
noise reduction in the frequency domain. In comparison withthe tra-
ditional parametric Wiener gain, the major novelty of this presented
approach is that the parametric gain is formulated to estimate the
noise by using the mean-squared error (MSE) between the noise and
the noise estimate. The enhanced signal is then obtained by sub-
tracting the noise estimate from the noisy observation signal. We
show that this new method is more practical to implement and can
produce better noise reduction performance as compared to the tra-
ditional parametric Wiener filtering techniques if the order of the
parametric gain is not equal to 1. If the order is 1, the parametric
gain is similar to the traditional Wiener gain. Simulation results are
presented to illustrate the properties of this new approach.

Index Terms— Noise reduction, speech enhancement, single-
channel, frequency domain, Wiener gain, parametric gain.

1. INTRODUCTION

Noise is ubiquitous and can cause significant degradation inspeech
quality and intelligibly in speech communication systems.To reduce
the impact of the noise, noise reduction (or speech enhancement) is
needed to “clean” the noisy signal before it is stored, compressed,
transmitted or played back [1–4]. There are many different ways
to achieve noise reduction, including filtering techniques, spectral
restoration, model based methods [5–16], etc. However, oneof the
most widely used methods so far is the gain approach in the fre-
quency domain or more precisely in the short-time Fourier transfor-
m (STFT) domain. In such a method, the noisy signal that is to be
enhanced is partitioned into small frames and transformed into the
frequency domain using the STFT. Then a gain is estimated andap-
plied to the noisy speech spectrum in each subband to achievenoise
reduction. Many different algorithms were developed over the last
three decades to estimate the noise reduction gain [10–16].Those
methods differ from each other in the form of the gain as a function
of the signal statistics. But they all share a common basis, i.e., the
gain is formulated to directly estimate the clean speech using statis-
tics of the observed noisy signal and estimated noise statistics.

In this paper, we investigate a parametric gain approach to noise
reduction. Unlike the traditional techniques that estimate the de-
sired, clean speech directly, we formulate the problem as toesti-
mate the noise first, and the speech estimate is then obtainedby sub-
tracting the noise estimate from the noisy signal. We show that this
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new method is more practical to implement and can produce better
noise reduction performance as compared to the traditionalparamet-
ric Wiener filtering techniques if the order of the parametric gain is
not equal to 1. If the order is 1, the parametric gain is similar to the
traditional Wiener gain.

2. SIGNAL MODEL AND PROBLEM FORMULATION

The noise reduction (or speech enhancement) problem considered in
this paper is one of recovering the desired signalx(t), t being the
time index, of zero mean from the noisy observation (microphone
signal) [1, 3]:

y(t) = x(t) + v(t), (1)

where the zero-mean random processv(t) is the unwanted additive
noise, which is assumed to be independent ofx(t). All signals are
considered to be real, stationary, and broadband.

In the frequency domain, at frequency indexf , (1) can be ex-
pressed as

Y (f) = X(f) + V (f), (2)

whereY (f), X(f), andV (f) are the frequency-domain represen-
tations ofy(t), x(t), andv(t), respectively. Sincex(t) andv(t) are
independent and zero mean by assumption, the variance ofY (f) is

φY (f) = E
[
|Y (f)|2

]
= φX(f) + φV (f), (3)

where E[·] denotes mathematical expectation, andφX(f) =
E
[
|X(f)|2

]
andφV (f) = E

[
|V (f)|2

]
are the variances ofX(f)

andV (f), respectively.
The objective of single-channel noise reduction in the frequency

domain is then to find from the observation a “good” estimate of
X(f) in the sense that the additive noise is significantly reduced
while the desired signal is not substantially distorted.

Traditionally, an estimate of the desired signal,X(f), is ob-
tained by applying a gain,H(f), to the observation,Y (f). The
minimization of the corresponding mean-squared error (MSE) of this
well-known concept leads to the classical Wiener gain [3]:

HW(f) =
φX(f)

φY (f)
=

iSNR(f)

1 + iSNR(f)
, (4)

where

iSNR(f) =
φX(f)

φV (f)
(5)
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is the narrowband input signal-to-noise ratio (SNR). It is clear that
this gain is always real and0 ≤ HW(f) ≤ 1. Therefore, the optimal
estimate ofX(f) in the minimum MSE sense is

X̂W(f) = HW(f)Y (f) = e
θY (f)

HW(f) |Y (f)| , (6)

where is the imaginary unit with2 = −1 andθY (f) is the phase
of Y (f).

Alternatively, we can also estimate the noise signal,V (f), by
applying a gain,H ′(f), to the observation,Y (f). By using the
MSE criterion, we easily find that the optimal gain

H
′
W(f) =

φV (f)

φY (f)
=

1

1 + iSNR(f)
, (7)

and the corresponding estimator is

V̂W(f) = H
′
W(f)Y (f). (8)

As a consequence, the optimal estimate ofX(f) is

X̂
′
W(f) = Y (f)− V̂W(f) = X̂W(f). (9)

Obviously, the two methods are strictly equivalent. However, when
a parametric gain is used, the two methods may generate different
performance as will be discussed in the next section. Generally, the
second technique is preferred in practice becauseH ′

W(f) [which
depends explicitly on the statistics ofV (f) andY (f)], is easier to
estimate thanHW(f) [which depends explicitly on the statistics of
X(f) andY (f)]

It can be shown [3] that the broadband output SNR with the
Wiener gain, which is defined as

oSNR (HW) =

∫
f
H2

W(f)φX(f)df
∫
f
H2

W(f)φV (f)df
(10)

is always greater than or equal to the broadband input SNR, which
is given by

iSNR =

∫
f
φX(f)df

∫
f
φV (f)df

. (11)

However, the narrowband output SNR with the Wiener gain is al-
ways equal to the narrowband input SNR.

3. PARAMETRIC APPROACH

In this section, we propose to estimate|V (f)|α, with α > 0 (the
parametric order), by applying a gain,H ′

α(f), to the modified obser-
vation, |Y (f)|α. SinceH ′

α(f) |Y (f)|α is an estimate of|V (f)|α,
then a natural estimate ofV (f) is

V̂α(f) = e
θY (f) [

H
′
α(f) |Y (f)|α

]1/α
= α

√
H ′

α(f)Y (f). (12)

We deduce that an estimate ofX(f) is

X̂α(f) = Y (f)− V̂α(f) (13)

=
[
1− α

√
H ′

α(f)
]
Y (f)

= Hα(f)Y (f),

where

Hα(f) = 1− α
√

H ′
α(f) (14)

is the equivalent gain for the estimation ofX(f) from Y (f).
We define the error signal between the signal of interest and its

estimate as

Eα(f) = |V (f)|α −H
′
α(f) |Y (f)|α , (15)

from which we deduce the parametric MSE criterion:

J
[
H

′
α(f)

]
= E

[
E2
α(f)

]
(16)

= φ|V |,α(f) +H
′2
α (f)φ|Y |,α(f)− 2H ′

α(f)φ|V ||Y |,α(f),

whereφ|V |,α(f) = E
[
|V (f)|2α

]
, φ|Y |,α(f) = E

[
|Y (f)|2α

]
, and

φ|V ||Y |,α(f) = E [|V (f)|α |Y (f)|α].
The minimization ofJ [H ′

α(f)] with respect toH ′
α(f) leads to

the optimal gains for the estimation ofV (f) andX(f), respectively,
i.e.,

H
′
α,o(f) =

φ|V ||Y |,α(f)

φ|Y |,α(f)
(17)

and

Hα,o(f) = 1− α

√
H ′

α,o(f) = 1− α

√
φ|V ||Y |,α(f)

φ|Y |,α(f)
. (18)

The quantityφ|Y |,α(f) can be easily estimated from the observa-
tions while the quantityφ|V ||Y |,α(f) can be estimated from the com-
ponents of the noise during silences [even with a delay between
Y (f) and V (f)] since no phases are involved in the expression.
Substituting (17) into (16), we find that the minimum MSE is

J
[
H

′
α,o(f)

]
= φ|V |,α(f)

[
1−

φ2
|V ||Y |,α(f)

φ|V |,α(f)φ|Y |,α(f)

]
(19)

= φ|V |,α(f)
[
1− γ

2
|V ||Y |,α(f)

]
,

where

γ
2
|V ||Y |,α(f) =

φ2
|V ||Y |,α(f)

φ|V |,α(f)φ|Y |,α(f)
, (20)

with 0 ≤ γ2
|V ||Y |,α(f) ≤ 1. Obviously, the optimal estimate of

X(f) in this context is

X̂α,o(f) = Hα,o(f)Y (f). (21)

We can expressHα,o(f) as a function ofγ|V ||Y |,α(f), i.e.,

Hα,o(f) = 1−
α

√√√√γ|V ||Y |,α(f)

√
φ|V |,α(f)

φ|Y |,α(f)
. (22)

We observe from the previous equation that0 ≤ Hα,o(f) ≤ 1.

4. PERFORMANCE MEASURES

In this paper, we adopt the output SNR, the noise reduction factor,
the speech distortion index, and the perceptual evaluationof speech
quality (PESQ) [19, 20] as the the performance measures for an ob-
jective evaluation of the parametric gain approach presented in the
previous section.

The narrowband and broadband input SNRs were already de-
fined in Section 2. Since we deal with gains, the narrowband output
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SNR is equal to the narrowband input SNR. The broadband input
SNR is defined as

oSNR (Hα,o) =

∫
f
H2

α,o(f)φX(f)df
∫
f
H2

α,o(f)φV (f)df
. (23)

The noise reduction factor quantifies the amount of noise re-
jected by the filtering process [18]. The narrowband and broadband
noise reduction factors are defined respectively as [4]

ξnr [Hα,o(f)] =
φV (f)

H2
α,o(f)φV (f)

=
1

H2
α,o(f)

, (24)

ξnr (Hα,o) =

∫
f
φV (f)df

∫
f
H2

α,o(f)φV (f)df
(25)

=

∫
f
φV (f)df

∫
f
φV (f)× ξ−1

nr [Hα,o(f)] df
.

We always haveξnr [Hα,o(f)] ≥ 1 andξnr (Hα,o) ≥ 1.
The gainHα,o(f) adds distortion to the desired signal,X(f). In

order to evaluate the level of this distortion, the so-called speech re-
duction factor was introduced, which is defined as the variance of the
desired signal over the variance of the filtered version of the desired
signal [4]. For the problem described in this paper, the narrowband
and broadband speech reduction factors can be defined as

ξsr [Hα,o(f)] =
φX(f)

H2
α,o(f)φX(f)

=
1

H2
α,o(f)

, (26)

ξsr (Hα,o) =

∫
f
φX(f)df

∫
f
H2

α,o(f)φX(f)df
(27)

=

∫
f
φX(f)df

∫
f
φX(f)× ξ−1

sr [Hα,o(f)] df
.

We see thatξsr [Hα,o(f)] ≥ 1 andξsr (Hα,o) ≥ 1.
It is clear that we always have

oSNR (Hα,o)

iSNR
=

ξnr (Hα,o)

ξsr (Hα,o)
. (28)

Another useful performance measure is the speech distortion in-
dex defined as

υsd [Hα,o(f)] =
E
[
|Hα,o(f)X(f) −X(f)|2

]

φX(f)
(29)

= [Hα,o(f)− 1]2

in the narrowband case and as

υsd (Hα,o) =

∫
f
E
[
|Hα,o(f)X(f)−X(f)|2

]
df

∫
f
φX(f)df

(30)

=

∫
f
φX(f) × υsd [Hα,o(f)] df

∫
f
φX(f)df

in the broadband case. It can be checked that0 ≤ υsd [Hα,o(f)] ≤ 1
and0 ≤ υsd (Hα,o) ≤ 1.
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Fig. 1. Broadband input and output SNRs of the parametric gain for
different orders over time in different noise cases: (a) white Gaussian
noise, (b) car noise, and (c) NYSE noise. The time-domain input
SNR is10 dB.

5. SIMULATIONS

We have formulated the single-channel parametric gain approach to
the problem of noise reduction in Section 3. In this section,we study
the performance of this approach through experiments. Meanwhile,
we attempt to address two fundamental questions: 1) why are we in-
terested in the parametric gain approach instead of using the Wiener
gain and 2) why do we want to estimate the noise instead of the de-
sired speech directly?

The clean speech signals are recorded from a female and a male
talker in a quiet office room. We consider three types of noise: a
white Gaussian random process, a babble noise signal recorded in
a New York Stock Exchange (NYSE) room, and a car noise signal
recorded in a sedan running 50 MPH on a highway. All the signal-
s are 30 seconds long and the sampling frequency is 8 kHz. The
noisy signal is obtained by adding noise into the clean speech with a
specified input SNR level.

To implement the parametric gain, the time domain signals are
partitioned into overlapping frames (the frame size is128 and the
overlapping factor is75%) with a Kaiser window, and then trans-
formed into the STFT domain using a 128-point FFT. The noise
varianceφ|V |,α(f) and |V (f)|α are blindly estimated from the
noisy speech signal using a variant of the minimum controlled re-
cursive average (MCRA) algorithm [10]. The quantityφ|Y |,α(f)
andφ|V ||Y |,α(f) are computed usingY (f) and the estimated noise
spectrum and noise statistics with a recursive method wherethe for-
getting factor is set to 0.6. After enhancement, the signalsare trans-
formed into the time domain using the inverse STFT with an overlap
add method.

In the first experiment, we examine the performance of the para-
metric gain method in different noise cases. Figure 1 plot the broad-
band input and output SNRs in three different noise cases (white
Gaussian, car, and NYSE), whereα = {0.5, 1, 2}. The time-domain
input SNR, which is calculated using a long term average, is 10 d-
B. We see that the parametric gain can improve the broadband SNR
significantly in all three studied cases. We also see that theoutput S-
NR deceases as the value ofα increases. So, the value ofα plays an
important role on the noise reduction performance. To see this more
clearly, we carried out a set of experiments. Figure 2 plot the noise
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Fig. 2. Performance of the parametric gain as a function of the pa-
rameterα in white Gaussian noise with an input SNR of 0 dB: (a)
noise reduction factor, (b) speech distortion index, and (c) PESQ s-
core.
reduction factor, speech distortion index, and the PESQ score as a
function ofα in white Gaussian noise with an input SNR of 0 dB.
Note that the broadband noise reduction factor and speech distortion
index plotted in this figure are the average results over all the frames.
The PESQ score is computed as follows. For each speaker (we have
a male and female speaker), the PESQ score is computed by com-
paring the enhanced signal with the original clean speech. The final
PESQ score is obtained by mapping these two scores to the PESQ
listening quality objective score [20].

As we can see from Fig. 2, both the noise reduction factor and
speech distortion index decrease as the value ofα increases. The
underlying reason can be explained as follows. The parametric
gain in (18) is an increasing function ofα. It can be checked that
limα→0 Hα,o(f) = 0 and limα→+∞ Hα,o(f) = 1. Therefore, if
α = 0, all the noise is removed, and so is the speech signal, which
means that both the noise reduction and the speech distortion are
maximized. Ifα → +∞, there will be neither speech distortion or
noise reduction. When the value ofα increases, the parametric gain
will add less speech distortion, but also reduce less noise.In com-
parison, the PESQ score is not a monotonic function with respect
to α. It first increases and then decreases as the value ofα increas-
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Fig. 3. PESQ score as a function of the parameterα in white Gaus-
sian noise. The two dashed black lines show the PESQ score of the
noisy signal in 0 dB and 10 dB, respectively.

es. The highest PESQ score is obtained whenα is approximately 2
in the condition of white noise with 0-dB input SNR. This answers
the question why we are interested in the parametric gain approach.
Briefly, the parametric gain approach can yield better noisereduc-
tion performance as compared to the Wiener gain if the parameterα
is properly chosen.

In the second experiment, we study the difference between esti-
mating directly the desired signal,X(f), and estimating directly the
noise. Following the same principles of Section 3, we can derive the
gain to directly estimate|X(f)|α, i.e.,

Gα,o(f) =
α

√
φ|X||Y |,α(f)

φ|Y |,α(f)
, (31)

where

φ|X||Y |,α(f) = E [|X(f)|α |Y (f)|α]

= E
[(
|Y (f)|2 + |V (f)|2 − 2|V (f)Y (f)|

)α

2 |Y (f)|α
]
. (32)

SinceX(f) is not known in practice, it is difficult to directly esti-
mateφ|X||Y |,α(f). Generally, however, it is assumed that we can
estimate|V (f)|2 andφV (f). Substituting these noise statistics into
(32), one can compute the gain in an indirect way.

Figure 3 plot the PESQ scores for enhanced signal using
Gα,o(f) andHα,o(f). One can see that the PESQ score with the
use ofHα,o(f) is higher than that of usingGα,o(f). This justifies
the reason why we need to estimate the noise instead of the desired
speech directly. It is observed that the value ofα to produce the
largest PESQ score changes with the input SNR. So, in practice, it
would be better if the value ofα is determined adaptively according
to the SNR condition, which will be our future work.

6. CONCLUSIONS

In this paper, we studied the single-channel noise reduction problem
in the frequency domain with a parametric gain approach. Instead
of directly estimating the desired speech signal, we formulated the
problem as first to estimate the noise and then the speech estimate
is obtained by subtracting the noise estimate from the noisysignal.
The optimal parametric gain in the minimum MSE sense was de-
rived to obtain the noise estimate. With experiments, we illustrated
the advantage of using the parametric approach over the traditional
Wiener gain. It was also demonstrated why we should formulate the
problem as estimating the noise first instead of the desired speech.

7. RELATION TO PRIOR WORK

Various noise reduction methods have been developed over the past
several decades [1]– [18], among which the gain approach in the
short-time Fourier transform (STFT) domain is by far one of the
most widely used methods in practice. Traditionally, the gain is for-
mulated to directly estimate the desired clean speech usingnoisy
and noise signal statistics. In this paper, we reformulate the prob-
lem as one of estimating the noise first; and then the speech estimate
is obtained by subtracting the noise estimate from the noisysignal.
We show that this new method is more practical to implement and
can produce better noise reduction performance as comparedto the
traditional parametric Wiener filtering techniques if the order of the
parametric gain is not equal to 1. If the order is 1, the parametric
gain is similar to the traditional Wiener gain.
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