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ABSTRACT

This paper studies the problem of single-channel noise reduction in
the time domain, where an estimate of a vector of the desired clean
speech is achieved by filtering a frame of the noisy signal with a
rectangular filtering matrix. The core issue with this problem for-
mulation is then the estimation of the optimal filtering matrix. The
squared Pearson correlation coefficient (SPCC) is used. We show
that different optimal filtering matrices can be derived by maximiz-
ing or minimizing the SPCCs between different signals. For exam-
ple, maximizing the SPCC between the enhanced signal and the fil-
tered speech gives the reduced-rank Wiener and minimum distortion
(MD) filtering matrices while minimizing the SPCC gives the min-
imum noise (MN) and another reduced-rank Wiener filtering matri-
ces. Simulation results are presented to illustrate the properties of
these filtering matrices.

Index Terms— Noise reduction, speech enhancement, single-
channel, time-domain filtering, optimal filtering matrices, Pearson
correlation coefficient.

1. INTRODUCTION
Noise reduction has been a major challenge in speech signal pro-
cessing and, as a consequence, lots of efforts have been devoted to
this problem over the past few decades [1]– [16]. Among various
techniques that have been developed, the filtering technique is per-
haps the most straightforward method, which obtains an estimate of
the clean speech sample at every time instant by applying a filter-
ing vector to the noisy signal vector [10–12]. Recently, this filtering
technique has been extended to a more generic case where an esti-
mate of a block of the desired clean speech is achieved every time
by applying a rectangular filtering matrix instead of a filtering vec-
tor to the noisy signal [14], [13]. This generalized version of the
filtering method does not only improve the noise reduction perfor-
mance if the block size is properly chosen, but is also computation-
ally more efficient as compared to the sample based method [13].
With this formulation of the noise reduction problem, the core issue
is the derivation of optimal filtering matrices.

Typically, the optimal filtering matrices are derived from the
mean-squared error (MSE) criterion [7], [8]. Recently, the squared
Pearson correlation coefficient (SPCC) has been introduced as the
cost function to derive noise reduction filters [7]. Using the SPCC
has been shown to have many advantages as compared to the MSE
criterion. For instance, it can, on the one hand, provide many new
insights into the traditional noise reduction filters derived from the
MSE criterion and, on the other hand, help deduce some new filters
that were not seen with the MSE criterion. In our previous work [12],
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we explored the use of the SPCC as the cost function to design op-
timal filtering vectors. In this work, we extend our previous study
to a more general, block-based framework with a rectangular fil-
tering matrix. Combining the SPCC with the block-based filtering
framework, we develop a new class of filtering matrices for noise
reduction by either maximizing or minimizing the SPCC between
different signals. We show that maximizing the SPCC between the
enhanced signal and the filtered speech, we can derive two optimal
rectangular filtering matrices, i.e., the reduced-rank Wiener and min-
imum distortion (MD) filtering matrices, which give direct estimates
of the clean speech. While minimizing the SPCC, we derive the min-
imum noise (MN) filtering matrix and another reduced-rank Wiener
filtering matrix, which give estimates of the noise from which we
deduce estimates of the clean speech.

2. SIGNAL MODEL AND PROBLEM FORMULATION
In the noise reduction problem considered in this paper, the noisy
observation or microphone signal is given by [8, 14]

y(k) = x(k) + v(k), (1)

where k is the discrete-time index, x(k) is the clean speech signal,
and v(k) is the unwanted additive noise, which is assumed to be
uncorrelated with x(k). All signals are considered to be zero mean,
real, stationary, and broadband.

The signal model given in (1) can be put into a vector form by
considering the L most recent successive time samples, i.e.,

y(k) = x(k) + v(k), (2)

where

y(k) =
[
y(k) y(k − 1) · · · y(k − L+ 1)

]T (3)

is a vector of length L, superscript T denotes transpose of a vector
or a matrix, and x(k) and v(k) are defined in a similar way to y(k).
Since x(k) and v(k) are uncorrelated by assumption, the correlation
matrix (of size L× L) of the noisy signal can be written as

Ry = E
[
y(k)yT (k)

]
= Rx +Rv, (4)

where E[·] denotes mathematical expectation, and Rx =
E
[
x(k)xT (k)

]
and Rv = E

[
v(k)vT (k)

]
are the correlation ma-

trices of x(k) and v(k), respectively.
Let us define the vector of length M :

x̃(k) =
[
x(k) x(k − 1) · · · x(k −M + 1)

]T
, (5)

where 1 ≤ M ≤ L. In the same manner, the vector ṽ(k) is com-
posed of the first M elements of v(k). The objective of single-
channel noise reduction (or speech enhancement) in the time domain
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is then to find a “good” estimate of the desired signal vector, x̃(k),
from the observation signal vector, y(k), in the sense that the ad-
ditive noise is significantly reduced while the desired signal is not
much distorted.

We end this section by defining the input signal-to-noise ratio
(SNR):

iSNR =
tr (Rx)

tr (Rv)
, (6)

where tr(·) denotes the trace of a square matrix. This is one of the
most fundamental measures in speech enhancement.

3. LINEAR FILTERING WITH A RECTANGULAR
MATRIX AND CORRELATION COEFFICIENT

An estimate of x̃(k) or ṽ(k) can be obtained by applying a linear
transformation to y(k) [14], i.e.,

z̃(k) = Hy(k) = x̃fd(k) + ṽfn(k), (7)

where z̃(k) is an estimate of x̃(k) or ṽ(k),

H =


hT
1

hT
2

...
hT
M

 (8)

is a rectangular filtering matrix of size M × L, hm, m =
1, 2, . . . ,M are real-valued filters of length L, x̃fd(k) = Hx(k)
is the filtered desired speech, and ṽfn(k) = Hv(k) is the filtered
noise.

It is of great importance to know how much of x̃(k) or ṽ(k)
is contained in the estimator z̃(k). One of the best second-order
statistics based measure to evaluate this is via the squared Pearson
correlation coefficient (SPCC) [1]. We define the SPCC between
z̃(k) and x̃fd(k) as

ρ2z̃x̃fd
(H) =

E2
[
z̃T (k)x̃fd(k)

]
E [z̃T (k)z̃(k)]E [x̃T

fd(k)x̃fd(k)]
(9)

=
tr
(
HRxH

T
)

tr (HRyHT )
.

In the same manner, we define the SPCC between z̃(k) and ṽfn(k)
as

ρ2z̃ṽfn
(H) =

E2
[
z̃T (k)ṽfn(k)

]
E [z̃T (k)z̃(k)]E [ṽT

fn(k)ṽfn(k)]
(10)

=
tr
(
HRvH

T
)

tr (HRyHT )
.

It is easy to see that

ρ2z̃x̃fd
(H) + ρ2z̃ṽfn

(H) = 1. (11)

We observe that the SPCCs defined above depend explicitly on
the filtering matrix, H. This observation suggests that we can use
the SPCC as a criterion to derive optimal filtering matrices. In the
rest, we focus only on ρ2z̃x̃fd

(H). The same results can be obtained
with ρ2z̃ṽfn

(H) because of the relation (11).

4. OPTIMAL FILTERING MATRICES
Intuitively, it makes sense to maximize or minimize the SPCC in or-
der to find an estimate of x̃(k) or ṽ(k). It is clear that the maximiza-
tion (resp. minimization) of ρ2z̃x̃fd

(H) will give a good estimate of
x̃(k) [resp. ṽ(k)], since in this case the SPCC between z̃(k) and
x̃fd(k) will be maximal (resp. minimal), implying that z̃(k) is close
to x̃(k) [resp. ṽ(k)].

The concept of joint diagonalization [17] is going to be useful
here. The two Hermitian matrices Rx and Ry can be jointly diago-
nalized as follows [17]:

TTRxT = Λ, (12)

TTRyT = IL, (13)

where
T =

[
t1 t2 · · · tL

]
(14)

is a full-rank square matrix (of size L× L),

Λ = diag (λ1, λ2, . . . , λL) (15)

is a diagonal matrix whose main elements are real and nonnegative,
with λ1 ≥ λ2 ≥ · · · ≥ λL ≥ 0, and IL is the L×L identity matrix.
Furthermore, Λ and T are the eigenvalue and eigenvector matrices,
respectively, of R−1

y Rx, i.e.,

R−1
y RxT = TΛ. (16)

The matrices containing the first P and last Q eigenvectors of
R−1

y Rx are, respectively,

TP =
[
t1 t2 · · · tP

]
(17)

and
TQ =

[
tL−Q+1 tL−Q+2 · · · tL

]
. (18)

These two matrices will be used soon. We deduce from (12) and (13)
that Rv can also be diagonalized as

TTRvT = IL −Λ. (19)

Since Rv is positive semi-definite, it is straightforward to deduce
that

0 ≤ λl ≤ 1, l = 1, 2, . . . , L. (20)

It can be shown that

λL ≤ ρ2z̃x̃fd
(H) ≤ λ1. (21)

The previous inequalities give tighter bounds as compared to the
well-known ones, i.e., 0 ≤ ρ2z̃x̃fd

(H) ≤ 1, and also give nice links
between the SPCC and joint diagonalization.

We define the output SNR as

oSNR (H) =
tr
(
HRxH

T
)

tr (HRvHT )
. (22)

Therefore, the SPCC can also be expressed as a function of
oSNR (H), i.e.,

ρ2z̃x̃fd
(H) =

oSNR (H)

1 + oSNR (H)
. (23)

Using (21), we easily deduce the lower and upper bounds for the
output SNR:

λL

1− λL
≤ oSNR (H) ≤ λ1

1− λ1
. (24)
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4.1. Maximization of the SPCC
It should be clear now that the maximization of (9) leads to an esti-
mate of the desired signal. Assume that the largest eigenvalue, λ1, of
the matrix R−1

y Rx is of multiplicity P 1. The corresponding eigen-
vectors are t1, t2, . . . , tP . Let the filtering matrix be of the form:

HΘP = ΘPT
T
P , (25)

where ΘP ̸= 0 is an arbitrary matrix of size M × P . It is clear that
HΘP maximizes (9) and

ρ2z̃x̃fd
(HΘP ) = ρ2z̃x̃fd,max = λ1. (26)

Therefore, the estimate of x̃(k) is

x̃ΘP (k) = HΘP y(k). (27)

Since the SPCC is maximized, so is the output SNR. We deduce that

oSNR (HΘP ) =
λ1

1− λ1
≥ iSNR. (28)

Now, we need to determine ΘP . The mean-squared error (MSE)
between x̃(k) and x̃ΘP (k) is

J (HΘP ) = tr
[
E
{
[x̃(k)−HΘP y(k)] [x̃(k)−HΘP y(k)]

T
}]

= tr
(
Rx̃ − 2IiRxH

T
ΘP

+HΘP RyH
T
ΘP

)
= Jds (HΘP ) + Jrn (HΘP ) , (29)

where Rx̃ is the correlation matrix of x̃(k), Ii =
[
IM 0

]
is the

identity filtering matrix (of size M ×L), with IM being the M ×M
identity matrix,

Jds (HΘP ) = tr
(
Rx̃ − 2IiRxH

T
ΘP

+HΘP RxH
T
ΘP

)
(30)

= tr
(
Rx̃ − 2IiRxTPΘ

T
P +ΘPT

T
PRxTPΘ

T
P

)
is the distortion-based MSE, and

Jrn (HΘP ) = tr
(
HΘP RvH

T
ΘP

)
(31)

= tr
(
ΘPT

T
PRvTPΘ

T
P

)
is the power of the residual noise. From (29), we observe that we
have at least two obvious options to find ΘP .

The first option consists of minimizing J (HΘP ). We easily get

ΘP = IiRxTP

(
TT

PRyTP

)−1

= IiRxTP . (32)

Then, we deduce the reduced-rank Wiener filtering matrix:

HRRW = IiRxTPT
T
P . (33)

For P = L, HRRW becomes the classical Wiener filtering matrix,
i.e.,

HW = IiRxR
−1
y , (34)

since R−1
y = TTT .

1In practice, we may consider the P largest eigenvalues of R−1
y Rx.

In the second option, we minimize Jds (HΘP ). This leads to
the minimum distortion (MD) filtering matrix:

HMD = IiRxTP

(
TT

PRxTP

)−1

TT
P , (35)

where it is assumed that the rank of Rx is at least equal to P . If the
rank of Rx is exactly P , then HMD becomes the minimum variance
distortionless response (MVDR) filtering matrix. If, indeed, λ1 is of
multiplicity P , (35) simplifies to

HMD =
1

λ1
IiRxTPT

T
P . (36)

4.2. Minimization of the SPCC
Assume that the smallest eigenvalue, λL, of the matrix R−1

y Rx

is of multiplicity Q2. The corresponding eigenvectors are
tL−Q+1, tL−Q+2, . . . , tL. Let the filtering matrix be of the form:

HΘQ = ΘQT
T
Q, (37)

where ΘQ ̸= 0 is an arbitrary matrix of size M ×Q. It is clear that
HΘQ minimizes (9) and

ρ2z̃x̃fd

(
HΘQ

)
= ρ2z̃x̃fd,min = λL. (38)

Therefore, the estimates of ṽ(k) and x̃(k) are, respectively,

ṽΘQ(k) = HΘQy(k) (39)

and

x̃ΘQ(k) = Iiy(k)− ṽΘQ(k) = H′
ΘQ

y(k), (40)

where

H′
ΘQ

= Ii −HΘQ (41)

is the equivalent filtering matrix for the estimation of x̃(k).
There are at least two interesting ways to find ΘQ. The first one

is from the power of the residual noise, i.e.,

Jrn

(
HΘQ

)
= tr

[
E
{[

ṽ(k)−HΘQv(k)
] [

ṽ(k)−HΘQv(k)
]T}]

= tr
(
Rṽ − 2IiRvH

T
ΘQ

+HΘQRvH
T
ΘQ

)
, (42)

where Rṽ is the correlation matrix of ṽ(k). The second possibility
is from the MSE between x̃(k) and x̃ΘQ(k), i.e.,

J
(
HΘQ

)
= tr

[
E
{[

ṽ(k)−HΘQy(k)
] [

ṽ(k)−HΘQy(k)
]T}]

= tr
(
Rṽ − 2IiRvH

T
ΘQ

+HΘQRyH
T
ΘQ

)
. (43)

The minimization of Jrn

(
HΘQ

)
with respect to ΘQ gives

ΘQ = IiRvTQ

(
TT

QRvTQ

)−1

. (44)

As a result,

HΘQ = IiRvTQ

(
TT

QRvTQ

)−1

TT
Q (45)

2In practice, we may consider the Q smallest eigenvalues of R−1
y Rx.
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and the minimum noise (MN) filter for the estimation of x̃(k) is

H′
MN = Ii

[
IL −RvTQ

(
TT

QRvTQ

)−1

TT
Q

]
. (46)

If, indeed, λL is of multiplicity Q, (46) simplifies to

H′
MN = Ii

(
IL − 1

1− λL
RvTQT

T
Q

)
. (47)

By minimizing the MSE, we find another reduced-rank Wiener
filtering matrix:

H′
RRW = Ii

[
IL −RvTQ

(
TT

QRyTQ

)−1

TT
Q

]
(48)

= Ii
(
IL −RvTQT

T
Q

)
,

which is different from HRRW. However, for Q = L, (48) becomes

H′
RRW = Ii

(
IL −RvR

−1
y

)
= HW, (49)

which is the conventional Wiener filtering matrix.

5. SIMULATIONS
In this section, we study the noise reduction performance of the
deduced filtering matrices through simulations. The clean signal
used is a 30-second long speech recorded from a female speaker
in a quiet office room with a sampling frequency of 8 kHz. The
noise signal is a mixture of white Gaussian noise and a periodic
signal (consisting of six harmonics with a fundamental frequency
of 200 Hz, and the amplitudes of the harmonics are, respectively,
1, 0.8, 0.5, 0.35, 0.2, 0.1). The ratio between the intensity of the pe-
riodic signal and the white noise is 6 dB. The noisy signal is obtained
by adding this noise into the clean speech with an input SNR of 10 d-
B.

The correlation matrix Ry at every time instant k is computed
using a short-time average with the most recent 600 samples (75 ms
long). The matrix Rv is computed directly from the noise signal
also by a short-time average but with the most recent 960 samples
(120 ms long). Then the matrix Rx is computed according to Rx =
Ry − Rv (to ensure that this estimated speech correlation matrix
is positive semi-definite, the eigenvalue decomposition is applied to
it and all the small eigenvalues are set to zero). We use the output
SNR as defined in (22) and the speech distortion index as measures
to evaluate performance. The speech distortion index is defined as

υsd =
tr
{
E
(
[x̃fd(k)− x̃(k)] [x̃fd(k)− x̃(k)]T

)}
tr (Rx̃)

. (50)

Several experiments were carried out to evaluate the impact of
the values of the parameters L, M , P , and Q on the noise reduction
performance. Due to space limit, we present one set of experiments
in which we set M = 10, P = L/2, and Q = L/2, and study the
performance of different filtering matrices as a function of the filter
length L.

Figure 1 plots the results. It is clearly seen that the filter length L
plays an important role in noise reduction performance. As the val-
ue of L increases from 10 to 80, the output SNR increases while the
speech distortion index decreases for all the studied filtering matri-
ces. However, as one can see, for L ≤ 40, the output SNR increases
and the speech distortion index decreases quickly. After that, both
performance measures do not change much by further increasing L.
Note that as the value of L increases, the computational complexity
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Fig. 1. Performance of the reduced-rank Wiener, MD, MN, and an-
other reduced-rank Wiener filtering matrices as a function of the
filter length L: (a) output SNR and (b) speech distortion index.
iSNR = 10 dB and M = 10.

also increases. As a consequence, the selection of the filter length L
is a compromise between the noise reduction performance and the
computational complexity. From the results shown, one can see that
40 is a good choice.

It is observed that the output SNR of the reduced-rank Wiener
and MD filtering matrices is higher than that of the other two filter-
ing matrices. This is understandable since the reduced-rank Wiener
and MD filtering matrices are derived from the maximization of the
SPCC, which also maximizes the output SNR. In comparison, the
MN and the other reduced-rank Wiener filtering matrices have a s-
maller speech distortion index. This is not surprising since these two
filtering matrices are derived from the minimization of the SPCC.

6. CONCLUSIONS
This paper studied the single-channel noise reduction problem in the
time domain with a filtering matrix. To obtain the optimal filtering
matrix, we utilized the SPCC between the enhanced signal and fil-
tered desired signal as the cost function. We showed how to derive
the reduced-rank Wiener and minimum distortion (MD) filtering ma-
trices by maximizing the SPCC and the minimum noise (MN) and
another reduced-rank Wiener filtering matrices by minimizing the
SPCC.

7. RELATION TO PRIOR WORK
Noise reduction is a challenging problem, which has attracted a sig-
nificant amount of attention over the past decades due to its broad
range of applications. Many methods and algorithms have been de-
veloped to deal with this challenging problem [1]– [16]. Traditional-
ly, the noise reduction problem in the time domain is achieved with
a filtering vector derived from the MSE criterion [7–13]. Recently,
the SPCC was introduced as the cost function, which has been very
useful in dealing with the noise reduction problem [1, 12]. In this
paper, based on the SPCC, we generalized the sample-based filter-
ing technique [12] to a block-based filtering framework and showed
how to derive different optimal filtering matrices.
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