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ABSTRACT

We formulate the problem of detecting the constituent instru-
ments in a polyphonic music piece as a joint decoding problem.
From monophonic data, parametric Gaussian Mixture Hidden
Markov Models (GM-HMM) are obtained for each instrument.
We propose a method to use the above models in a factorial frame-
work, termed as Factorial GM-HMM (F-GM-HMM). The states
are jointly inferred to explain the evolution of each instrument in
the mixture observation sequence. The dependencies are decoupled
using variational inference technique. We show that the joint time
evolution of all instruments’ states can be captured using F-GM-
HMM. We compare performance of proposed method with that of
Student’s-t mixture model (tMM) and GM-HMM in an existing la-
tent variable framework. Experiments on two to five polyphony with
8 instrument models trained on the RWC dataset, tested on RWC
and TRIOS datasets show that F-GM-HMM gives an advantage over
the other considered models in segments containing co-occurring
instruments.

Index Terms— Factorial HMM, Latent Variable, Polyphony, F-
GM-HMM

1. INTRODUCTION
Identifying multiple instruments present in polyphonic music is in-
dispensable in content based Music Information Retrieval, with ap-
plications in separation [1–5] and detection [6–13]. Latent Variable
(LV) formulations are used to achieve the task with non-parametric
[2, 3, 8, 11, 14] or parametric models [15]. The LVs indicate pres-
ence/contribution of each of the instruments. A commonality in such
probabilistic approaches is that likelihood of polyphonic signal ob-
servation vector is modeled in terms of individual instrument mod-
els. A generic approach for the same is proposed in [15] with focus
on detecting underlying instruments.

Factorial models are a natural choice to analyze observations
that are coupled due to simultaneous emissions from multiple, oth-
erwise independent, generative processes. For this application,
each generative process is modeled using Gaussian Mixture Hidden
Markov Models (GM-HMM) to capture attack, sustain and release
(A-S-R) sequence of a given instrument note. In this paper, we
propose a factorial framework to jointly analyze these temporal evo-
lutions of all instruments in a polyphonic signal. We refer to this as
Factorial GM-HMM (F-GM-HMM). It is a generalization of a spe-
cific type of factorial HMM with a single Gaussian emission density
per state (F-G-HMM), proposed in [16]. Variational inference tech-
nique is used to decouple dependencies of chains on observations to
infer the joint time evolution of all instruments’ states in addition to
(an introduced) silence state from the polyphony given monophonic
models. Further, we use F-GM-HMM in LV framework to detect
instruments and evaluate its performance. The contributions of this
paper are: 1) A generative F-GM-HMM model to explain A-S-R
patterns of instruments in a polyphony, 2) Formulation for multiple

instrument detection using F-GM-HMM model in a LV framework,
3) Generalization of F-G-HMM to F-GM-HMM, and insight into
decoupling in LV-framework against that in factorial framework, and
4) Comparison of performance of F-GM-HMM with that of tMM
(Student’s-t mixture model) [15], & GM-HMM in a LV-framework
on 8 instruments (clarinet, flute, guitar, harp, mandolin, piano, trom-
bone & violin) from RWC database [22]. Relation to prior work is
discussed in Section (5).

2. F-GM-HMM MODEL FOR POLYPHONY
It is well accepted that A-S-R portions of a music note strongly con-
tributes to characterize an instrument [17]. For a given instrument,
variability in attributes such as instrument make, style of playing,
note being played etc., reflects as variability in A-S-R features of the
instrument. Stochastic models can be used to capture these A-S-R
variabilities [11, 18–20]. We model the evolution of A-S-R patterns
for different notes of a given instrument using a 3-state left to right
(LR) HMM with each state emission distribution being modeled us-
ing GMMs to represent A-S-R pattern variability across notes of a
given instrument.

In a polyphonic signal, y(t), let the features of a T length seg-
ment be denoted by {Yt}Tt=1 = [Y1, Y2, . . . YT ]. Each vector, Yt ∈
RD×1, is comprised of contributions from one or more of M in-
struments. It is likely that in a given polyphonic piece, attack of an
instrument overlaps with release of another, while a few other in-
struments are in a sustain state. i.e., the instrument streams indepen-
dently evolve over time, but jointly contribute to polyphonic signal
Yt at frame t. So, Yt can be modeled as a coupled emission from
any state of all instruments. We propose to model this independent
behaviour of instruments, and address the coupling in {Yt} due to
various instrument states, from a generative model perspective. The
proposed F-GM-HMM model uses factorial framework with each
instrument being modeled by a GM-HMM.

A graphical model of F-GM-HMM model is shown in Fig. 1(a).
{Yt} are shaded to indicate that they are observed polyphonic fea-
ture vectors. Let each horizontally connected variables of the graph
(referred to as chain) denote K-states (3 for A,S,R) of first order
LR-HMM model of one instrument. M such chains indicate pos-
sible contributions from M instruments. A K ×M matrix, St ,
[S1
t , S

2
t , . . . S

M
t ], denotes the latent states such that Smt (km) = 1,

if the mth instrument is in kthm state at tth time frame and 0 oth-
erwise, ∀km ∈ [1,K], m ∈ [1,M ], t ∈ [1, T ]. Let each latent
state Smt (km) generate another latent variableZm,kmt to indicate the
state’s mixture density component chosen. Then, Zmt , a P̌ ×K LV
matrix, is such that Zm,kmt (pk) = 1, if at tth instant, pthk mixture
component (pk ∈ [1, P̌ ]) from kthm state of the mth instrument is
emitting observations. The complete likelihood of latent sequences
and the observed vectors can be written as:

P ({St,Zt, Yt}|θa) = P ({St}|θa)P ({Zt}|{St},θa)

P ({Yt}|{Zt},θa)
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Fig. 1. Graphical models depicting (a) F-GM-HMM, (b) F-G-HMM (c) LV-F-GM-HMM.

=

T∏
t=1

P (St,θa)P (Zt|St,θa)P (Yt|Zt,θa) (1)

where, P (S1,θa) =

M∏
m=1

P (Sm1 |θma ), (2)

P (St,θa) =

M∏
m=1

P (Smt |Smt−1, θ
m
a ) ∀t > 1, (3)

P (Zt|St,θa) =

M∏
m=1

K∏
km=1

P (Zm,kmt |Smt (km), θma ) (4)

P (Yt|Zt,θa) = P (Yt|{Zmt }Mm=1,θa) (5)

With each state emission probabilities modeled as mixture Gaussian
distributions, we impose the following on polyphonic observation Yt
conditioned on the state and emission variables :

P (Yt|Z1,k1
t , Z2,k2

t , . . . ZM,kMt ,θa) ,

N
(
Yt;

M∑
m=1

µmZmt ,
M∑
m=1

CmZmt
)

(6)

where θa = [θ1
a, θ

2
a, . . . θ

M
a ] and θma = [πm, Am,αm,µm,Cm]

are the parameters of the monophonic instrument GM-HMM model ,
∀m ∈ [1,M ]. µm is aD×P̌×K matrix containing P̌ means (µ) for
each of the K states of mth instrument. The latent variable Zm,kmt

chooses the relevant mean from µm, while Cm is its corresponding
covariance matrix.

In effect, Eqn. (6) assumes that the polyphonic Yt is sum of
Gaussian random variables from M instruments, whose evolution is
indicated by latent variables St and Zt resulting in joint decoding of
instruments. We can also interpret it as observations, Yt compared
with not just each θma , but a combination of them. In other words,
Eqn. (6) attempts to find the combination of distributions that can
best explain the observations.

However, it is difficult to separate Zmt term entangled in the in-
verse of sum of covariance matrices in Eqn.(6), for inference pur-
poses. Moreover, C , (E({Y 2

t }Tt=1) − E({Yt}Tt=1)2) and, C =∑M
m=1C

mZmt . Hence, we equivalently use C, evaluated for every
observation segment, in Eqn.(6).

Now, we can observe from Fig. 1(a), Eqn. (1-6), that the F-G-
HMM proposed in [16] using a single Gaussian emission for each
state of a chain HMM can be seen as a special case of F-GM-HMM
i.e., for P̌ = 1, one can arrive at F-G-HMM formulations in [16].
Equivalent to Eqn. (5) and Eqn. (6), we get:

P (Yt|St,θb) = P (Yt|{Smt }Mm=1,θb) (7)

P (Yt|S1
t , S

2
t , . . . S

M
t ,θb) , N

(
Yt;

M∑
m=1

µmSmt ,C
)

(8)

where θb = [θ1
b , θ

2
b , . . . θ

M
b ] and θmb = [πm, Am,µm,Cm] are the

parameters of the G-HMM monophonic instrument model, ∀m ∈

[1,M ], with C being calculated from data of every observation seg-
ment. A graphical model of F-G-HMM is shown in Fig. 1(b).
Originally, F-G-HMM in [16] is developed to model real time se-
ries data that may have complex internal structure. One can also
use F-G-HMM with A-S-R still modeled by 3-state single Gaussian
LR HMM. However, we would not be capturing the variabilities in
attack, sustain or release state emission accurately. Also, experimen-
tally, we observe GM-HMMs performing significantly better than G-
HMMs on monophonic instrument identification as shown in Table.
1. We expect similar performance in the factorial approach.

In order to capture hidden dynamics of all instruments, best ex-
plaining a given polyphonic feature vector Yt, we must infer the
probability of states, St and its emission component Zt of the F-
GM-HMM model. An exact inference for Zt and St will require
a large number of forward backward recursions over latent variable
Zmt which in turn has P̌ × K values in each m, resulting in time
complexity of order of O(TM(P̌K)M+1). Hence, we use vari-
ational inference algorithm to accommodate the mixture emission
model.

We derive structured variational inference for F-GM-HMM
analogous to F-G-HMM in [16]. The complete likelihood of the
variables of graphical model in Fig. 1(a) is given by Eqn. (1).
The first 2 terms of RHS in Eqn. (1) is determined by θma alone
[from Eqn. (2-4)]. It is required to evaluate the 3rd term for which
we introduce an approximate distribution Qv to minimize the KL
divergence between complete likelihood given by Eqn. (1), and an
approximate distribution Q({St}, {Zt}|θa) , Qv where,

Qv =
1

ZQ

M∏
m=1

P (Sm1 |θma )

T∏
t=2

M∏
m=1

P (Smt |Smt−1, θ
m
a )

M∏
m=1

T∏
t=1

Q(Zm,kmt |Smt ,θa) (9)

with, Q(Zm,kmt |Smt ,θa) =

P̌∏
pk=1

[hm,kmt (pk)]
Z
m,km
t,pk (10)

and ZQ is for normalization. By minimizing, KL(Qv||P ) w.r.t
log hn,knt , we get a closed form expression for hm,kmt as:

hm,kmt = αm,km exp

{
µm,km

TC−1[Yt −∑
n 6=m

µn,knE(Zn,knt )
]
− 1

2
δm,km

}
(11)

where, δm,km = diag{µm,kmTC−1µm,km}. Eqn. (11) is very
similar to the variational inference based solution for Eqn. (8) of
F-G-HMM [16] i.e.,

hmt = exp{µmTC−1(Yt −
∑
n 6=m

µnE(Snt ))− 1

2
δm} (12)
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Eqn. (11) is inclusive of the weights αm of the emission Gaussian
mixtures of θa. For the considered application, we do not update
θa. The algorithm to calculate the likelihood of {Yt} for F-GM-
HMM is drafted below.

Algo 1: F-GM-HMM
Training: Find parameters θma of each of M instruments.
Testing: Initialize all E(Zm,kmt ) to be equal.
(i) Calculate P̌ × 1 vector, hm,kmt vector, using Eqn. (11).
(ii) Use hmt = P (Yt|Zm,kmt ) in the forward backward algo in M
HMMs to evaluate E(Zm,kmt ), total likelihood. θma are unaltered.

Stopping criteria: Repeat (i) & (ii) till likelihood change ≤ ε (0.001)
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Fig. 2. [Color online](a) Spectrogram of a 2 s polyphonic signal compris-
ing of flute & violin instruments (b) Instrument evolution in the polyphony
depicted by forward likelihood, P ({Yt}, Smt (k)|θa) for all states and in-
struments calculated using F-GM-HMM.

In order to achieve decoupling in F-GM-HMM, the variable hm,kmt

approximates the likelihood of data w.r.t. latent variables {Smt },
{Zm,kmt } for all possible combinations of the variables and in turn
calculates likelihood of all M models.

The advantage of factorial models is that it is possible to simul-
taneously calculate the probability of all states, of all instruments in
a polyphonic signal. For the testing phase, we have introduced an
additional silence state for each instrument so that no instrument is
forced into any of its K trained (attack-sustain-release) states. This
is important when < M instruments contribute to the polyphony.
The (K + 1) × (K + 1)transition matrix for achieving the same is
engineered by subtracting small amounts (∼0.05) from the diagonal
terms of Am. The µm matrices are appended with feature vectors
containing zero entries to simulate silence state. We illustrate the
same in Fig. 2(b) for a 2 s mixture signal comprising of 2 instruments
(flute and violin) along with its spectrogram to depict evolution. The
mixture signal contains a decaying flute note for 0.5 s, followed by
another onset at 1.8 s; and, a violin note is present in the entire 2 s
duration, with its attack lasting for 0.5 s (note the gradual increase in
strength of higher harmonics). We calculate P ({Yt}, Smt |θa) using
forward-backward algorithm for each instrument, after decoupling
P (Yt|Zm,kmt ) for both flute & violin. An instrument is said to be
active if it contributes to the polyphony else passive.

3. LV-GM-HMM AND LV-F-GM-HMM MODELS
Although likelihoods from F-GM-HMM generative model for a
polyphony indicates presence of several instruments in different

states, it is difficult to estimate active instruments directly as dis-
criminability between active and passive instrument is lesser. We
therefore propose to use these likelihoods in generic LV frame-
work of [15] (and evaluated for tMM) for detecting instruments in a
polyphony.

Let Ω ∈ BM & B = {0, 1} be a LV to flag an active instrument.
Let θ indicate the parameter set of allM individual instrument mod-
els. The likelihood of mth instrument using F-GM-HMM (Algo 1),
for smaller segments of {Yt} of duration τ < T , ∀t ∈ [1, T/t′] is
given by:
Pm({Yt}t

′
t=t′−τ |θa) =

K∑
km=1

P ({Yt}, Smt (km) = 1|θa) (13)

We use this likelihood in the generic LV framework given by:

P (Yt|θa) =

M∑
m=1

ωmPm({Yt}t
′
t=t′−τ |θa) s.t.,

M∑
m=1

ωm = 1 (14)

where, ωm = P (Ω(m) = 1) indicates probability of mth instru-
ment being active. We refer to this approach as LV-F-GM-HMM
(graphical model in Fig. 1(c)). Similarly, using mth GM-HMM
model, θma to calculate likelihood, P ({Yt}t

′
t=t′−τ |θma ) of mth in-

strument, we get LV-GM-HMM model as:

P (Yt|θa) =

M∑
m=1

ωmP ({Yt}t
′

t=t′−τ |θma ) s.t.,

M∑
m=1

ωm = 1 (15)

The EM algorithm to evaluate ωm is as follows:

Algo 2: LV-GM-HMM or LV-F-GM-HMM
Training: Find parameters θma of each of M instruments.
Testing: Initialize all ωm to be equal.

(i) Find posterior γmt′ =
ωmP ({Yt}t

′
t=t′−τ |θ

m
a )∑

m ωmP ({Yt}t
′
t=t′−τ |θ

m
a )

(ii) Evaluate ωm = t′

T

∑T/t′

t=1 γmt′

Stopping criteria:Repeat (i) & (ii) till posterior change ≤ ε′(0.001)

For insight into differences between LV-GM-HMM and LV-F-GM-
HMM methods, we note that in the former approach, likelihood of
polyphonic signal is evaluated using each monophonic signal model.
The major assumption in this model defined by Eqn. (15) is that
P (Yt|Ω(m) = 1,θa) , P ({Yt}|θma ). This assumption decou-
ples the set of models θa in LV-GM-HMM. The same assumption
is true for LV-F-GM-HMM too, but Pm({Yt}|θa) is calculated
jointly considering all M models .i.e., decoupling of likelihood by
F-GM-HMM takes into account all possible instruments’ states and
components, through Eqn. (6,13) (Algo 1). Individual likelihood
is then used in LV framework to equivalently arrive at active set of
instruments, through Eqn. (14)(Algo 2). Since, we take into account
all the instruments’ states before calculating individual likelihood, a
better performance in segments containing overlapping instruments
can be expected.

4. EXPERIMENTS AND RESULTS
The performance of the proposed approach is evaluated on RWC
database [22] on three models: LV-GM-HMM, LV-tMM [15] &
LV-F-GM-HMM models. The 8 chosen instruments are: clarinet,
flute, guitar, harp, mandolin, piano, trombone and violin. 12 di-
mensional Mel-frequency cepstral co-efficients (MFCC) with ∆ &
∆2 co-efficients are used as feature vectors for training after silence
removal. We have used a frame length of 25 ms, a frame shift of 10
ms for obtaining the MFCC using HTK [23]. An analysis segment,
{Yt}Tt=1 , constitutes T such consecutive frames.

4.1. Instrument models
Monophonic training data comprises of individual notes from at-
least 5 min of data from RWC dataset for each instrument with si-
lence removal. We train using tMM [15], GMM and HMM models.
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We use diagonal covariance matrices in the mixture models. For
HMMs, we have used 3-state Left to Right (LR) latent variable such
that each state captures attack, sustain and release portions of an in-
strument note. τ for HMM is set to 50 ms. A set of∼8000 randomly
selected notes, excluding training set, is chosen for all instruments
in the testing phase. The instrument model yielding highest likeli-
hood for given data is taken as the detected instrument. Each train
or test data length is at-most 5 s. The test data and training data of
all instruments are such that they differ in either the artist or instru-
ment manufacturer [22]. Table. 1 shows the performance accuracy
evaluated on test notes, for solo instrument recognition task, with
varying mixture components in each model. As expected, increasing
mixture components results in a better model. The improvement is
lesser as mixture components increase. tMM and GMM show simi-
lar performance, while HMMs consistently show better performance
justifying A-S-R contribution in instrument recognition.

Table 1. Average note-wise recognition accuracy for 8 monophonic instru-
ments using different models.

Mixtures 1 4 8 16 32
GMM 58.61 70.49 73.64 78.09 80.60
tMM 59.57 66.54 74.82 77.82 80.83

3-state LR-HMM 65.54 75.26 77.30 79.48 81.27

4.2. Multi-Instrument Recognition in Polyphonic Music
Multi-instrument polyphonic test signals are created by linear addi-
tion of amplitude normalized monophonic test data of the M = 8
instruments. A L-polyphony test set comprises of all

(
M
L

)
combi-

nation of instruments, with L ∈ [2, 5]. Performance of detecting
all instruments in each 5 s segment is measured using F-measure.
An instrument in T length segment is considered detected if any
ωm > εth, with εth as threshold. For polyphonic detection, we have
used only 12 MFCCs of test and training models, as the mixture
signal will not have ∆ and ∆2 co-efficients linearly related to indi-
vidual instruments. MFCCs themselves are also not additive, but can
be approached through Parallel Model Combination [24]. However,
combining multiple such mixture distributions is not straightforward
and is beyond the scope of this paper. The detection performance
per frame using LV-tMM (32-component tMM), and LV-GM-HMM
and LV-F-GM-HMM (both with 8 component Gaussian for each of
3 states LR model) is shown in Fig. (3). We report results for T of
500 frames (5 s), with a segment shift of 100 frames (1 s).

The LV-F-GM-HMM exhibits better detection accuracy as num-
ber of polyphony increases. This can be explained because LV-tMM
or LV-GM-HMM rely on the regions where there is little or no over-
lap for its performance. When the signals overlap completely, the
accuracy drops drastically, more so in the higher polyphony case.
In such signals, LV-F-GM-HMM are seen to be showing greater ac-
curacy. LV-F-GM-HMM is observed to exhibit lower performance
scores in lower polyphony. This behaviour is observed to be linked
to Eqn. (11), which can be seen as a search for best possible com-
bination from all the M instrument models to explain the data and
hence unlikely to yield a sparse solution for lesser polyphony, even
if the signals are additive in nature, in absence of sparsity constraints
to control the number of false detections.

We have tested on TRIOS dataset [25]. We have chosen the
common instruments i.e., clarinet, piano & violin signals to create
2 and 3 polyphony signals. The total duration of constructed 2 and
3 polyphony is ∼ 500 min. We use the RWC trained models. The
mean of F-measures are plotted in Fig. 3(b). We find that the accu-
racy of LV-F-GM-HMM is better than that of LV-tMM or LV-GM-
HMM for 3- polyphony. The overall detection accuracy itself is quite
low. This is attributed to training-testing cross database environment

mismatch & presence of chords in the piano portions, which are not
in the training set.
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Fig. 3. [Color online] Average of segment-wise F-measure of LV-tMM
(blue), LV-GM-HMM (green) and LV-F-GM-HMM (red) for L-polyphony
generated from (a) RWC dataset (b) TRIOS dataset. T = 5 s, t′ = 100ms,
τ = 500 ms & εth = 0.1.

5. DISCUSSION
We have proposed a generative F-GM-HMM model for detecting in-
struments and their evolution in polyphonic signals. We have shown
F-GM-HMM is shown to be a generalized version of F-G-HMM.
Simultaneous capture of A-S-R patterns in polyphony using F-GM-
HMM is demonstrated. For analysis of structures in mixture signals,
F-GM-HMM being a more general version, can be expected to give
more flexibility where detection/classification (rather than parameter
estimation) is vital.

Two closely related approaches using factorial HMM are, Fac-
torial Scaled HMM (FSHMM) in [26] and Non-negative factorial
HMM (NFHMM) in [27], for source separation. In FSHMM, the
mixture signal is modeled as sum of the components from latent
states of the HMMs. The components of each state of HMM are
assumed to exhibit zero mean Gaussian mixture distributions. The
spectral characteristics and amplitude factors are accounted in the
variance of the Gaussians. Succeeding parameter estimation step,
using multiplicative updates, is the inference step to obtain the am-
plitude factors to separate the sources. The amplitude factors play a
similar role as Zm,kmt in our formulation, even though approaches
for modeling the spectral envelope are different. Non-negative
Matrix Factorization (NMF) with Markov chained bases (called
MNMF) have also been proposed in [28] to learn A-S-R patterns
from spectrogram and it is shown that FSHMM is a particular case
of MNMF. NFHMM, a non-parametric model, uses a latent variable
to identify elements as well as to assign proportion from a combined
dictionary over both sources (as speech sources may have spectrally
similar aspects). We note that using discrete density in Eqn. (5)
leads to formulation similar to N-FHMM in [27]. For our appli-
cation, spectral sources do not share a dictionary/model (owing to
different distributions) resulting in a different graphical model as
against in [27, 29]. Further, we decouple only the probability of
the polyphonic signal and not the signal itself as in signal separa-
tion application. For detecting multiple instruments, the instrogram
technique in [10] uses HMM, similar to that of P (Yt|θam) likelihood
calculation (for a set of 28 features). However, no latent variable is
used, and the likelihood is multiplied with a non-specific instrument
existence probability to accentuate the position of notes. Whereas
in [11, 12], temporal and durational constraints are added to discrete
HMMs to capture the dynamics of sound (in terms of attack, sustain
and release) along with notes. The approach of identifying the in-
struments can be seen as similar to LV-GM-HMM formulation with
discrete distributions.

We have decoupled each instrument contribution in total likeli-
hood, and used them in LV framework for identifying multiple in-
struments in polyphony. We have evaluated on cross database using
LV based F-GM-HMMs and found them to be more advantageous
for higher polyphony, than LV based mixture models. This is signif-
icant when many harmonics of the component instruments overlap.
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