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ABSTRACT

This paper proposes a novel biologically inspired method for
sound event classification which combines spike coding with
a spiking neural network (SNN). Our spike coding extracts
keypoints that represent the local maxima components of the
sound spectrogram, and are encoded based on their local time-
frequency information; hence both location and spectral in-
formation are being extracted. We then design a modified
tempotron SNN that, unlike the original tempotron, allows the
network to learn the temporal distributions of spike coding in-
put, in an analogous way to the generalized Hough transform.
The proposed method simultaneously enhances the sparsity
of the sound event spectrogram, producing a representation
which is robust against noise, as well as maximises the dis-
criminability of the spike coding input in terms of its tem-
poral information, which is important for sound event classi-
fication. Experimental results on a large dataset of 50 envi-
ronment sound events show the superiority of both the spike
coding versus the raw spectrogram and the SNN versus con-
ventional cross-entropy neural networks.

Index Terms— Neural spike coding, local spectrogram
features, noise robust, sound event classification.

1. INTRODUCTION

The field of sound event classification has been receiving re-
newed interest in recent years due to the wide range of pos-
sible applications. These include acoustic surveillance [1],
bioacoustic monitoring [2], environmental sound detection [3,
4], or general machine hearing [5]. While the task of sound
event classification shares many similarities with the task of
automatic speech recognition (ASR), there a number of fun-
damental differences that motivate the study of approaches
designed specifically for sound events. In particular the prob-
lem of environmental mismatch is important, since the physi-
cal nature of many sounds means that the majority of the spec-
trogram may be dominated by the background noise, reducing
the discrimination of the extracted feature representation.

To address this challenging task, we propose a novel
spiking neural network (SNN) system that combines a robust
spike coding of local spectrogram features, with an artifi-
cial neural network using a cost function that promotes a

spiking detection-based output. The idea is that the neural
network can learn a mapping from the input spike coding to
produce a output spike at a particular moment in time which
indicates the detection of the given sound class. There has
been previous study into such biologically plausible recogni-
tion systems, and here we focus on the Tempotron learning
approach [6], which we have previously employed in our pre-
liminary work [7]. The Tempotron cost function reinforces
the strongest output over the reference segment from the pos-
itive class until a spike is produced, while penalising negative
classes that associate strongly with the given input. In this
work we propose to generalise the Tempotron to allow the
network to learn the distribution of the input spike coding
over time and frequency by providing a context window of
spikes at the input of the network. This is unlike the dis-
tribution function in the original Tempotron, which models
the biologically inspired leaky integrate-and-fire activation
as a function of two exponentials [6], and can be seen as
a similar formulation to the Generalised Hough Transform
(GHT) from image processing [8], which similarly learns the
distribution of codebook activations.

The robustness of the proposed system is achieved through
a sparse spike coding of the acoustic signature of the sound
event in the spectrogram. As opposed to conventional frame-
based features, we base the spike coding on local features
from the spectrogram, an idea which has proved successful in
our previous work on detecting overlapping sound events [9].
The use of local features is inspired by research into the hu-
man auditory system, which suggests that the processing may
be based on the partial recognition of features that are local
and uncoupled across frequency [10]. For the spectrogram,
each local feature then captures a glimpse of the sound in-
formation in the spectrogram at a given time and frequency
location [11], followed by recognition which proceeds by
combining together the local evidence to form a decision.
The advantage is that a sound can still be recognised even
when a proportion of features is missing or corrupted.

To illustrate the idea, Fig. 1 gives an overview of the pro-
posed system, which shows a bell ringing sound event being
encoded and detected. It can be seen how the proposed sys-
tem consists of two important steps: (1) the time-frequency
spectrogram is transformed into a sparse spike coding by de-
tecting local features in the spectrogram and matching them
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(a) Spectrogram of Bell sound in 10dB noise,
showing the detected keypoints (white ×)
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(b) Spike distribution within the context win-
dow, learnt by the SNN for the Bell sound
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(c) Steps in spike coding system
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(d) Spike coding of the Bell sound in (a) us-
ing k-means codebook
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(e) Output voltage from artificial neural net-
work for five different classes over time

Fig. 1. Overview of the proposed spiking neural network system. The two key steps are as follows: (1) the spike coding of
local features in the spectrogram, shown in (a) and (d); and (2) the spiking neural network with Tempotron cost function, which
learns the distribution of the input spikes, shown in (b) and (e).

against a codebook of local feature information; and then (2)
the spiking neural network learns the distribution of the input
spikes over time and frequency to produce an output spike
corresponding to a detection of the target class. These two
aspects are described in detail over Sections 2 and 3, before
Section 4 examines the performance of the proposed system
on a large database of environmental sound events.

2. SPIKE CODING APPROACH

The proposed spike coding is generated by first detecting key-
points in the spectrogram, which localise the sparse high-
energy peaks in the spectrogram, and then extracting the lo-
cal spectral information to find the best matching entries in a
codebook. The idea is that such peaks will still be present un-
der mismatched noise, and the discriminative local feature in-
formation should provide a robust foundation for further pro-
cessing. The final output can be considered as a novel sparse
representation of the spectrogram, since the spike coding pre-
serves the frequency information while outputting a sparse
spike coding of the detected local features.

2.1. Local Spectrogram Feature Extraction

Starting from a conventional 40-dimension Mel-filtered spec-
trogram representation, S(f, t), we first detect the high en-

ergy peaks which we refer to as “keypoints”. To do this,
we search for local maxima across the frequency dimension.
The local spectral region surrounding the keypoint is then ex-
tracted and stored as follows:

K(f, t) = {S(f ± df , t± dt)} if S(f, t) ≥ S(f±1, t) (1)

where df , dt = 7 are the range of the local patch across fre-
quency and time respectively.

A further step is taken to reduce the number of keypoints
by introducing a sparsity criterion to reject keypoints that do
not represent significant maxima. For this, a threshold γ is set
based on the mean of the local spectral region. A keypoint is
rejected if S(f, t)− µ(f, t) < γ, where µ is calculated as:

µ(f, t) = mean [K(f, t)] . (2)

In our experiments, we fix γ = 1, although we found that the
performance was not highly sensitive to this parameter.

2.2. Robust Spike Coding

To produce a spike coding of this representation, a codebook
dictionary is first generated that contains entries representing
the variation of local feature information. Here we use k-
means clustering to produce the codebook, C. However other
approaches are possible, such as sparse coding [12]. For the
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each entry where z = 1 . . . Z in the codebook, Cz , the Eu-
clidean distance is used as the similarity measure, with a lo-
cal missing feature mask introduced to reduce the influence
of the noise on the codebook matching. The distance between
the codebook and a local feature at position (f, t) is therefore
calculated as follows:

yz = ‖ Czr −K(f, t)r ‖ (3)

where the reliable local feature indices, r, are calculated as
r = K(f, t) > µ(f, t), and µ(f, t) is the local mean (2).

The best matching codebook entry then generates a spike
in the output “spatio-temporal” pattern, P (x, t), where x =
(f − 1) × Z + zbest is the unique position for the given fre-
quency and codebook activation, with the best matching unit
(BMU) zbest calculated as:

zbest = argmax
z

yz. (4)

This is repeated a number of times, nBMU = 3, to allow
for several similar codebook entries to be activated. This was
found to produce a more robust spike coding pattern.

3. NEURAL SPIKE RECOGNITION SYSTEM

To recognise the spatio-temporal spike coding, we propose to
use a neural network that can learn the mapping between the
input features and output target using back propagation. In
particular, we want to encourage the network to learn weights
that represent the distribution of the information in the sparse
input spike coding. The network can then perform a func-
tion analogous to a generalised Hough transform (GHT) [8],
which similarly learns the distribution of local feature code-
book matches [13]. The advantage of the SNN approach is
that it becomes possible for the spike distribution to be learnt
discriminatively by adjusting the weights to directly optimise
the mapping.

Here we propose a SNN structure to achieve this map-
ping through an innovative combination of both spiking and
conventional neural network architectures. The chosen SNN
system is the Tempotron [6], which is a biologically plausible
architecture that learns to produce an output spike represent-
ing a detection of a given class. The network proceeds by first
passing the input spike coding through a integration kernel,
Ω, which captures the temporal distribution of spikes using a
leak integrate-and-fire neuron model, as follows:

V (t) =
∑
x

ωx(P (x, t) ∗ Ω) (5)

which is the weighted summation over the convolution be-
tween the input spike pattern, P (x, t) and Ω, which is defined
as follows:

Ω(t) = V0 (exp [−t/τ ]− exp [−t/τs]) (6)

where τ, τs are decay time constants and V0 normalises the
kernel to have a maximum of 1. The cost function is defined
based on the difference Vthr − V (tmax), such that weight
modification is only required for erroneous patterns at time
tmax. Erroneous patterns are defined as positive patterns with
no spike produced, or negative patterns producing a spike.

In this work we remove the fixed distribution function of
the Tempotron in (6), and instead expand the weight matrix to
take an input context window of frames, as follows:

V (t) =
∑
t′

∑
x

ωx,t′P (x, t− t′) (7)

where t′ represents the relative time within a context win-
dow. This allows the spiking neural network to discrimina-
tively learn the distribution of the input spike coding within
the context window from the data.

While this is similar to the context window used in DNN
systems, here the distribution is stored with the temporal
information captured within the context window relative to
the output spike produced by the Tempotron network at time
tmax. This allows much sharper and more discriminative
distribution weights to be learnt compared to performing
classification of every frame against a hard pre-defined la-
bel. In addition, the classification decision is based on the
output voltage over the segment, with the maximum spike
voltage used as a measure for classification, as opposed to the
frame-based probability distribution output by the DNN.

4. EXPERIMENTS

In this section, experiments are conducted to analyse the per-
formance of the proposed spiking neural network system on a
database containing a large number of environmental sounds.

Sound Database: A total of 50 sound classes are selected
from the Real Word Computing Partnership (RWCP) Sound
Scene Database in Real Acoustical Environments [14], giv-
ing a selection of collision, action and characteristics sounds.
The isolated sound event samples are around 0.5-3s in dura-
tion, have a high signal-to-noise ratio (SNR), and are balanced
with silence either side of the sound. The selected categories
cover a wide range of sound events, including wooden, metal
and china impacts, friction sounds, and others such as bells,
phones, and whistles. For each event, 50 files are randomly
selected for training and another 30 for testing. The total num-
ber of samples are therefore 2500 and 1500 respectively.

Noise Conditions: For each experiment the classification
accuracy is investigated in mismatched conditions, with most
systems using only clean samples for training. The average
performance for each method is reported in clean and at 20,
10 and 0 dB SNR for the “Speech Babble” noise environ-
ment obtained from the NOISEX’92 database [15]. For multi-
conditional training, three different noise types, “Destroyer
Control Room”, “Factory Floor” and “Jet Cockpit”, from the
NOISEX’92 database are added at 10dB SNR to the training.
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Method Training Data Input Features Hidden Layers Cost Function Clean 20dB 10dB 0dB Avg.

DNN
Multi Mel-

Spectrum

4 hidden
Cross Entropy

99.5 96.2 84.4 46.5 81.7
CNN 1 conv + 3 hidden 97.3 93.1 86.7 50.9 82.0

Proposed
Clean

1 hidden

Tempotron

98.1 58.1 26.5 10.2 48.2

Spike
Coding

no hidden 99.1 98.9 96.5 82.1 94.1
1 hidden 99.3 96.8 93.7 77.0 91.7

Bio-NN no hidden 97.0 95.8 91.8 75.5 90.0
DNN 1 hidden Cross Entropy 96.3 92.5 86.3 70.0 86.3

Table 1. Experimental results comparing the classification accuracy of the baseline and proposed SNN system in clean and
mismatched babble noise at 20/10/0dB SNR. Note: Bio-NN = Tempotron system using a fixed biologically-inspired distribution.

Experimental Setup: The experiments are designed to
examine the performance of both the spike coding and neural
spiking output aspects that contribute to the proposed spik-
ing neural network system. Hence we primarily compare the
results against competing artificial neural network systems,
using different network structures and cost functions. There-
fore we compare baseline deep/convolutional neural network
(DNN/CNN) systems with multi-conditional training to im-
prove the results in mismatched conditions. These networks
use the cross-entropy cost function, and the best performance
found using a context of 9 frames of 40 Mel-filterbank fea-
tures as input.

The proposed spike coding has 25 codebook entries, oc-
curring over the 40 frequency dimensions, giving each frame
an input size of 1000 dimensions. Our proposed Tempotron
network structure takes a context window over 25 frames of
the input spike coding to learn a set of spike distribution func-
tions, while the original Tempotron with fixed distribution
function is denoted “Bio-NN”. Across all systems, hidden
layers have 1000 neurons, layers are added with layer-wise
pretraining, and in the winning class is selected as the one
that most strongly associates with the given input.

Results and Discussion: The results are shown in Ta-
ble 1, where it can be seen that the best performing system
combines the sparse input spike coding with the Tempotron
cost function to give the proposed spiking neural network sys-
tem. This method achieves 94.1% averaged over the four
noise conditions, which is a strong result considering that
only clean samples are required for training. This compares
well to the multi-conditional DNN and CNN baselines, which
both achieve around 82% when trained on conventional Mel-
spectrum features. The results also break down the contribu-
tions from the various aspects of the system, as follows:

Spike Coding vs. Mel-Spectrum: while the Mel-spectrum
performs well in clean conditions it is not robust to
noise. However, the proposed spike coding only gener-
ates spikes at keypoints that are detected at sparse peaks
in the signal. These areas carry the most robust and dis-
criminative information, hence the spike coding system
performs well even in mismatched conditions.

Tempotron vs. Cross Entropy: unlike the cross-entropy cost
function, which attempts to classify each frame accord-
ing to the training label, the Tempotron cost function is
focussed on generating a spike when a given input pat-
tern is detected. This allows it to learn a more precise
mapping to capture the distribution of the input features
surrounding the output spike, and does not require an
accurate frame-level label for training. Table 1 shows
that for the same spike coding input features, the DNN
with cross entropy cost function performs consistently
worse across the noise conditions.

Learned vs. Bio-inspired (Bio-NN) Distribution: the origi-
nal Tempotron used a leaky integrate-and-fire neuron
model, which is equivalent to assuming a fixed distri-
bution of the input spike features. By removing this
constraint, the performance of the system improves
from 90.0% for the “bio-NN” to 94.1% for the pro-
posed system. This highlights the importance of the
time-frequency information captured by the spike cod-
ing features that can be easily learnt by the spiking
artificial neural network proposed in this work.

5. CONCLUSION

This paper proposes a spiking neural network system for ro-
bust sound event recognition that combines a sparse spike
coding of the spectrogram with the Tempotron cost function.
The spike coding uses a keypoint detection step, such that
spikes are only generated on the most robust and discrimina-
tive information in the spectrogram. The SNN can then learn
the distribution of the these spikes to capture the sound event
information over time and frequency. Unlike the conventional
cross-entropy cost function, our system uses the Tempotron
cost function, which produces a spiking output to indicate
when the target class is detected. This enables it to learn a
more precise mapping between the input spike coding and
the output, which contributes to the strong experimental re-
sults, giving a significant improvement over even the multi-
conditional DNN baseline.
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