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ABSTRACT

Recent studies have demonstrated the potential of unsupervised fea-
ture learning for sound classification. In this paper we further ex-
plore the application of the spherical k-means algorithm for feature
learning from audio signals, here in the domain of urban sound clas-
sification. Spherical k-means is a relatively simple technique that
has recently been shown to be competitive with other more complex
and time consuming approaches. We study how different parts of
the processing pipeline influence performance, taking into account
the specificities of the urban sonic environment. We evaluate our ap-
proach on the largest public dataset of urban sound sources available
for research, and compare it to a baseline system based on MFCCs.
We show that feature learning can outperform the baseline approach
by configuring it to capture the temporal dynamics of urban sources.
The results are complemented with error analysis and some propos-
als for future research.

Index Terms— Unsupervised learning, sound classification,
machine learning, urban, spherical k-means

1. INTRODUCTION

The automatic classification of sonic events in an urban setting
has a variety of applications including context aware computing
[1], surveillance [2], or the adaptation of content-based multime-
dia retrieval techniques such as highlight extraction [3] and video
summarization [4] to urban applications (e.g. identifying important
city-wide events) . Importantly, it also has the potential of improv-
ing the quality of life of city dwellers by providing a data-driven
understanding of urban sound and noise patterns, partly enabled by
the move towards “smart cities” equipped with multimedia sensor
networks [5].

While there is a large body of research on sound classification
in related areas such as speech, music and bioacoustics, work on the
analysis of urban acoustic environments is relatively scarce. When
existent, it mostly focuses on the classification of auditory scene
type (e.g. street, park) [1, 6, 7, 8], as opposed to the identification
of specific sound sources in those scenes such as a car horn, an en-
gine idling or a bird tweet. The latter is a challenging task given the
presence of multiple, often simultaneous, sources with very different
mechanisms of sound production. Furthermore, those sources can,
and likely will, be masked by noise, with many sources of interest,
such as air conditioners or engine sounds, fairly noise-like them-
selves. In addition, urban auditory scenes can represent an almost
infinite variety of configurations, lacking the high-level structure ob-
served in other domains such as speech and music.

This work was supported by a seed grant from New York University’s
Center for Urban Science and Progress (CUSP).

Most previous work on environmental sound source classifica-
tion relies on traditional, hand-crafted features [2, 9, 10] such as the
tried and tested Mel-Frequency Cepstral Coefficients (MFCCs) [11]
which have been shown to be sensitive to the type of background
noise found in an urban environment [12]. Recent studies in au-
dio classification have shown that accuracy can be boosted by using
features that are learned from the audio signal in an unsupervised
manner, with examples in the areas of bioacoustics [13] and music
information retrieval [14, 15, 16]. Unsupervised feature learning has
also been studied in the context of environmental sound classifica-
tion [8, 17], though the focus has been on auditory scene classifica-
tion, and not necessarily in an urban setting.

In this paper we explore the application of the spherical k-means
algorithm [18] as an unsupervised feature learning technique for
the classification of urban sonic events. In particular, we investi-
gate learning features that capture the temporal dynamics of differ-
ent sound sources. Whilst temporal dynamics were shown not to be
an important factor in other domains such as birdsong classification
[13], we show they play a key role in classifying urban sound sources
whose instantaneous noise-like characteristics can be hard to distin-
guish in the absence of temporal context. We base our study on a
dataset of field recordings [19] which is currently the largest public
dataset of labelled urban sound events available for research.

The structure of the remainder of the paper is as follows: in Sec-
tion 2 we describe the learning based classification approach studied
in this paper. In section 3 we outline our experimental design, in-
cluding dataset, evaluation measures and the variants of the proposed
system we evaluate. In Section 4 we present and discuss our results,
and finally we provide a summary of the paper and some directions
for future work in Section 5.

2. METHOD

Our proposed feature learning and classification approach is com-
prised of three main processing blocks: preprocessing, feature learn-
ing and classification, where in this paper we focus on the first two.
The key idea is to learn a codebook (or dictionary) of representa-
tive codewords (or bases) from the training data in an unsupervised
manner. Samples are then encoded against this codebook and the
resulting code vector is used as a feature vector for training / testing
the classifier. In the following subsections we describe each block in
further detail.

2.1. Preprocessing

As noted in [13], the raw audio signal is not suitable as direct input to
a classifier due to its extremely high dimensionality and the fact that
it would be unlikely for perceptually similar sounds to be neighbours
in vector space. Thus, a popular approach for feature learning from
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audio is to convert the signal into a time-frequency representation, a
common choice being the mel-spectrogram. We extract log-scaled
mel-spectrograms with 40 components (bands) covering the audible
frequency range (0-22050 Hz), using a window size of 23 ms (1024
samples at 44.1 kHz) and a hop size of the same duration. We also
experimented with a larger numbers of bands (128), but this did not
improve performance and hence we stuck to the lower (and faster
to process) resolution of 40 bands. To extract the mel-spectrograms
we use the Essentia audio analysis library [20] via its Python bind-
ings. Whilst we could use the resulting log-mel-spectrograms di-
rectly as input for the feature learning, it has been shown that the
learned features can be significantly improved by decorrelating the
input dimensions using e.g. ZCA or PCA whitening [18]. Follow-
ing [14], we apply PCA whitening keeping enough components to
explain 99% of the variance. The resulting representation is then
passed to the feature learning block.

It is important to note that we can apply the feature learning
either to individual frames of the log-mel-spectrograms, or alterna-
tively to several consecutive frames resulting in 2D patches. Group-
ing several consecutive frames (by concatenating them into a single
larger vector prior to PCA whitening), also known as shingling, al-
lows us to learn features that take into account temporal dynamics.
This option is particularly interesting for urban noise-like sounds
such as idling engines or jackhammers, where the temporal dynam-
ics could potentially improve our ability to distinguish sounds whose
instantaneous features (i.e. a single frame) can be very similar.

2.2. Feature Learning

2.2.1. Spherical k-means

For learning features from the whitened log-mel-spectrograms we
use the spherical k-means algorithm [18]. The main difference be-
tween this algorithm and variants of the widely-used k-means clus-
tering algorithm [21] is that the centroids are constrained to have unit
L2 norm (they must lie on the unit sphere), the benefits of which are
discussed in [18, 22]. When used for feature learning, our goal is to
learn an over complete codebook, so k is typically much larger than
the dimensionality of the input data. The algorithm has been shown
to be competitive with more advanced (and much slower) techniques
such as sparse coding, and has been used successfully to learn fea-
tures from audio for both music [14] and birdsong [13]. Here we
study its utility for learning features from urban sound recordings.

Let us represent our data as a matrix X ∈ Rn×m, where every
column vector x(i) ∈ Rn is the feature vector for a single sample
(in our case a whitened log-mel-spectrogram frame or patch), n is
the number of dimensions and i = 1 . . .m where m is the total
number of samples. We use s(i) to denote the code vector for sample
i which stores an assignment value for each of our k clusters. For
convenience, let S be the matrix whose columns are s(i). Finally, let
D ∈ Rn×k represent our codebook of k vectors (means). Then, the
spherical k-means algorithm can be implemented by looping over
the following three equations until convergence:

s
(i)
j :=

{
D(j)>x(i) if j == argmax

l
|D(l)>x(i)|∀j,i

0 otherwise.
(1)

D := XS> +D (2)

D(j) := D(j)/||D(j)||2∀j (3)

where > indicates matrix transposition. In Equation (1) we assign
samples to centroids, in (2) we update the centroids, and finally in
(3) we normalize the centroids to have unit L2 norm. Before running

the algorithm we randomly initialize the centroids in the codebook
D from a Normal distribution and normalize them as in (3). For
further details about the algorithm the reader is referred to [18].

2.2.2. Encoding

The learned codebook is used to encode the samples presented to the
classifier (both for training and testing). A possible encoding scheme
is vector quantization, i.e. assign each sample to its closest (or n
closest for some choice of n) centroids in the codebook, resulting
in a binary feature vector whose only non-zero elements are the n
selected neighbours. While this approach has been shown to work
for music [16], in our experiments we found that a linear encoding
scheme where each sample is represented by its multiplication with
the codebook matrix provides better results, in accordance with [14].

2.2.3. Pooling

After encoding, every audio recording is represented as a series of
encoded frames (or patches) over time. For classification, we have
to summarize over the time axis so that the dimensionality of all
samples is the same (and not too large). Different studies report
success using different summary (or pooling) statistics such as max-
imum [14], mean and standard deviation [13] or a combination of a
larger number of statistics such as minimum, maximum, mean and
variance [15]. In our experiments we use the mean and standard de-
viation, which we found to be the best performing combination of
two pooling functions. The final representation is of size k times the
number of pooling functions, and since k is already large (e.g. [13]
and [14] use k = 500), it is in our interest to keep the number of
pooling functions small. The resulting feature vectors are standard-
ized (across samples) prior to classification.

2.2.4. Class-conditional codebook learning

Rather than learning the codebookD from all the training data com-
bined, we can also separate the training data by class and learn a sep-
arate smaller codebook for each class. For instance, instead of one
codebook with k = 2000 we learn 10 codebooks with k = 200. Fi-
nally we take the union of the codebooks as the final codebook used
for encoding features. This approach has two potential advantages:
first, it could help in learning class-specific features as opposed to
features common to all classes that might be less predictive or even
represent noise. Second, it allows us to visualize the features by the
class from which they were learned, which is helpful for performing
a visual sanity check on the learned features.

2.3. Classification

Since our focus is on the feature learning stage, we use a single clas-
sification algorithm for all experiments – a random forest classifier
[23] (500 trees). This classifier was used successfully in combination
with learned features in [13], and was also one of the top performing
classifiers for a baseline system [19] evaluated on the same dataset
used in this study (cf. Section 3.1). For our experiments we use the
implementation provided in the scikit-learn Python library [24].

3. EXPERIMENTAL DESIGN

3.1. Dataset and Metrics

For evaluation we use the UrbanSound8K dataset [19]. The dataset is
comprised of 8732 slices (excerpts) of up to 4 s in duration extracted
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Fig. 1: Classification accuracy (a) and AUC (b) as a function of shingling, k and class-conditional (CC) codebook learning.

from field recordings crawled from the Freesound online archive1.
Each slice contains one of 10 possible sound sources: air condi-
tioner, car horn, children playing, dog bark, drilling, engine idling,
gun shot, jackhammer, siren, street music. The sources were selected
from the Urban Sound Taxonomy [19] based on the high frequency
with which they appear in noise complaints as determined from the
data provided by New York City’s 311 service (over 370,000 com-
plaints from 2010 to date)2. Since these are real field-recordings, it is
possible (and often the case) for there to be other sources present in a
slice in addition to the labeled source. All slices have been manually
annotated with the source ID and a subjective judgement of whether
the source is in the foreground or background.

To facilitate comparable research, the slices in UrbanSound8K
come pre-sorted into 10 folds using a stratified approach which en-
sures that slices from the same recording will not be used both for
training and testing, which could potentially lead to artificially high
results. For every experiment we run a 10-fold cross validation using
the provided stratified folds. For each fold we compute two widely
used evaluation metrics: classification accuracy and Area Under the
ROC Curve (AUC) [25]. Finally the result is presented as a box plot
generated from the 10 per-fold scores. To gain further insight we
also plot the confusion matrices for some of the experiments.

3.2. System Variants

In this study we explore two of the key parameters that can affect sys-
tem performance: the size of the codebook (number of learned cen-
troids) k = 500, 1000, 2000, and the number of frames we shingle
together prior to learning Nshingle = 1, 4, 8, 16. When Nshingle = 1 no
shingling is applied and we learn 1-dimensional features from single
frames. For all other values we learn 2-dimensional features which
incorporate temporal dynamics. In addition to these two parameters,
we also explore the effect of class-conditional codebook learning
(Section 2.2.4) by evaluating two codebooks for each combination
of parameters, one learned from all the training data combined and
one learned using class-conditional learning. For the latter we set
the size of each per-class codebook to k divided by the number of
classes (10), such that the final size of the codebook is equal to that
of the one learned from all the training data combined. Altogether

1http://www.freesound.org
2https://nycopendata.socrata.com/data

this gives us 3×4×2 = 24 experimental configurations to compare.
In addition to the 24 configurations proposed in this study we

also compare the results to the non-learning baseline system de-
scribed in [19] which computes 25 MFCC coefficients per frame and
summarizes each coefficient over time using 11 summary statistics.
We also evaluate 3 extensions of this baseline approach where we ap-
ply frame shingling (4, 8 and 16) to assess the influence of shingling
alone, without unsupervised learning.

For completeness, we briefly mention some of the variants ex-
perimented with whose results are not reported here: the number of
Mel bands (128 instead of 40), the encoding scheme (n-Hot with
n = 1, 8, 16 instead of a linear scheme) and other pooling functions
(e.g. maximum). As noted in Section 2, none of these alternatives
provided any improvement over the results reported in this study.

4. RESULTS AND DISCUSSION

The classification accuracy results for the 24 proposed configura-
tions and the baseline approach [19] are presented in Figure 1(a).
Each group of 7 box plots represents a different shingling strategy:
no shingling, 4 frames, 8 frames and 16 frames. The means are indi-
cated by the filled squares. The legend indicates the codebook size k
and whether class-conditional (CC) codebook learning was applied.

We see that all proposed configurations perform at least as well
as the baseline approach. When we learn our codebook from sin-
gle frames (no shingling), we see the proposed feature learning per-
forms comparably but does not outperform the baseline approach.
However, once we group several consecutive frames into 2D patches
(shingling) and apply the feature learning on those, the learned fea-
tures outperform the baseline. Indeed, for the best performing con-
figurations (patches of 8 or 16 frames with a class-conditional code-
book of size k = 2000) we obtained a 5% accuracy improvement
over the baseline (statistically significant according to a paired t-test
with p < 0.05). Incorporating temporal context through shingling
illustrates the importance of short-term temporal structure (beyond
delta MFCCs) for the characterization of sources that are common
to urban environments. Furthermore, we see that this gain in perfor-
mance does not occur when we shingle the baseline features, con-
firming that the improvement comes from the combination of shin-
gling and feature learning. This stands in contrast to birdsong clas-
sification for instance, where the authors did not observe a similar
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air conditioner car horn children playing dog bark drilling engine idling gun shot jackhammer siren street music 

Fig. 2: Features learned using class-conditional spherical k-means applied to 8-frame patches of PCA whitened log-mel-spectrograms.
(a) (b) 

Fig. 3: Confusion matrices for the baseline (left) and proposed feature learning approach (right). Classes: air conditioner (AI), car horn (CA),
children playing (CH), dog bark (DO), drilling (DR), engine idling (EN), gun shot (GU), jackhammer (JA), siren (SI), street music (ST).

improvement from frame shingling [13]. The downside to our solu-
tion however is that we need a separate basis (codeword) to encode
every phase shift within a shingle, thus requiring a larger codebook
(larger k). Indeed, the evaluation shows that for patches of 8 and 16
frames the accuracy increases monotonically with codebook size.

The AUC results for the same set of experiments are presented in
Figure 1(b). Whilst the influence of codebook size is less clear here,
overall the results are consistent with those discussed above: the
classifier trained with learned features is more stable than the base-
line, most so when learning patches of 8 or 16 consecutive frames.

Environmental recordings can be dominated by background
noise, which motivated us to experiment with class-conditional
codebook learning. Our underlying assumption was that in this
way we might avoid learning noise codewords (that are common
to all classes) and instead learn codewords that are truly indica-
tive of each sound source. From Figure 1(a) we see that whilst it
does improve classification accuracy (in particular for patches of 16
frames), the improvement over learning a single global codebook is
marginal. The difference might be more significant for unbalanced
datasets, but such a test is beyond the scope of this paper. Still, class-
conditional learning allows us to inspect the features learned for the
different classes. In Figure 2 we provide 3 examples of features
learned for each class using class-conditional codebook learning on
patches of 8 frames. Whilst it is not the case for all classes, for
some it is straightforward to provide a qualitative interpretation: for
car horns we learn stationary harmonic series, for children playing
we learn different patterns of human speech, jackhammer features
display a rapidly alternating pattern and siren features clearly show
increasing and decreasing harmonic tones.

Finally, to gain further insight into the classification errors of the
proposed approach and how they compare to the baseline, in Figure
3 we provide the confusion matrices for the baseline (left) and best

performing learning-based approach (right). Confusion values of in-
terest in both matrices are highlighted with red circles. We see that
the confusion is reduced for all classes when using the learned fea-
tures compared to the baseline. In particular, the most dramatic im-
provement is for the engine idling and jackhammer classes, both of
which had high confusion with the air conditioner class in the base-
line approach. A possible explanation is that whilst the three classes
may have similar statistics when summarized over time, they actu-
ally have distinct short-term temporal patterns, and thus by learning
2D patches the confusion between the sources is reduced. Some
improvement is also noted for more harmonic classes such as the
reduced confusion between car horns, children and street music. Fi-
nally, we note that in some cases the confusion is actually increased,
in particular between the air conditioner and drilling classes, both of
which include temporally-stationary noise-like sounds.

5. SUMMARY

In this paper we studied the application of unsupervised feature
learning to urban sound classification. We showed that classification
accuracy can be significantly improved by feature learning if we
take into consideration the specificities of this domain, primarily
the importance of capturing the temporal dynamics of urban sound
sources. In the future we intend to explore the use of multiscale
time-frequency representations [14] and modulation spectra [26] as
alternatives to shingling for encoding temporal dynamics, and the
application of techniques from text-IR such as tf-idf weighting to
increase the predictive power of our codebook [17]. Finally, we
intend to extend our approach from single to multi-label classifi-
cation so that our classifier can identify multiple concurrent sound
sources, and investigate its application for detecting sound events in
continuous audio recordings.
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