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ABSTRACT

This study is focused on an unsupervised approach for detection of
human scream vocalizations from continuous recordings in noisy
acoustic environments. The proposed detection solution is based
on compound segmentation, which employs weighted mean dis-
tance, T 2-statistics and Bayesian Information Criteria for detection
of screams. This solution also employs an unsupervised threshold
optimized Combo-SAD for removal of non-vocal noisy segments in
the preliminary stage. A total of five noisy environments were simu-
lated for noise levels ranging from -20dB to +20dB for five different
noisy environments. Performance of proposed system was compared
using two alternative acoustic front-end features (i) Mel-frequency
cepstral coefficients (MFCC) and (ii) perceptual minimum variance
distortionless response (PMVDR). Evaluation results show that the
new scream detection solution works well for clean, +20, +10 dB
SNR levels, with performance declining as SNR decreases to -20dB
across a number of the noise sources considered.

Index Terms— scream detection, T 2 distance, PMVDR,
CompSeg, T 2-BIC SAD

1. INTRODUCTION

The presence of non-speech sounds in continuous audio streams has
adverse effects on the performance of speech coding systems, spo-
ken document retrieval, speech and speaker recognition systems.
Thus, it becomes necessary to detect and suppress these events in
early stages of overall real-time speech systems. Apart from a pre-
processing step in speech systems, applications of scream detec-
tion can be employed in the area of acoustic surveillance or situa-
tion awareness where detecting these events, deviations from a calm
monitored space can be observed and appropriate actions taken to
address the situation.

Human sounds produced via the oral cavity can be classified
into two broad categories: i) speech and ii) non-speech. Non-speech
sounds includes vocalizations such as: scream, whistle, cough,
laugh, snore, sneeze, hiccups, etc. This study focuses on detection
of human screams which reflects a portion of the class of non-speech
sounds.

During the past two decades, extensive research has been ac-
complished in audio signal classification such as speech/music/ en-
vironmental sounds. Environmental sniffing is a framework where
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the environmental acoustics are analyzed to direct speech system re-
configuration [1, 2]. Recently, the research community has gained
interest in further detection and classification of non-speech human
sounds such as screams, coughs [3], snores [4], laughs [5] etc. be-
cause of their increasing applications in various areas including elder
care, home and health care, security and safety [6].

In this paper, our goal is to detect human screams from contin-
uous recordings in realistic noisy acoustic environments. We have
collected our own corpus and simulated different environments with
five different noise levels. Noisy environments include: babble, car,
factory, volvo and white Gaussian noise (WGN). For effective de-
tection, we use a two step approach, the first step employs a thresh-
old optimized unsupervised combo-SAD for silence removal [7] fol-
lowed by the next step which uses the Hotelling’s T 2-statistics and
Bayesian Information Criteria [8, 9] for speech/scream detection.
Performance of the proposed system is compared for two front-ends
features namely MFCC and PMVDR [10].

The remainder of this paper is organized as follows: first the
corpus collection and simulation is discussed in detail. Sec. 3 dis-
cusses the threshold optimized combo-SAD. Next, formulation of
the CompSeg algorithm which employs the weighted mean distance,
T 2-statistics and Bayesian Information Criteria is discussed. In Sec.
5 experimental evaluation is presented. Finally, concluding remarks
and directions for future research are given in Sec. 6.

2. RELATION TO PRIOR WORK

In recent years, there has been great interest in analysis and detec-
tion of non-speech sounds, particularly screams because of their in-
creasing applications. Most earlier work focuses either on front-end
features or on acoustic modeling.

In [6], analytical and statical features along with an SVM clas-
sifier were used for scream detection. In [11], MFCC, MPEG-7 fea-
tures and HMMs were used for scream and gunshot event classifica-
tion. Also in [12], a parallel GMM classifier network was utilized
for ambient noise, scream and gunshot detection.

Also various approaches proposed for shout detection [13, 14]
are not considered here, since shouted speech contains phonetic
structure in audio, where as in pure scream there is no phonetic
structure.

This work is different from previously proposed approaches in
the following sense: 1) we employ a completely unsupervised ap-
proach, to the best of our knowledge almost all the previous ap-
proaches are supervised; 2) Data was collected from human subjects
rather than using sound effects for scream from movies or internet
repositories; 3) a much wider set and range of noise levels are con-
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Fig. 1. Block diagram of threshold optimized vocal activity detection system.

sidered. Also, in our previous studies, we considered analysis of
human screams along with its impact on the performance of speaker
recognition systems [15]. Continuing along that theme, here we de-
velop this pre-processing stage for detection and removal of screams
to improve robustness of SID systems.

3. CORPUS DEVELOPMENT

The corpus for this study was collected, simulated and annotated at
the University of Texas at Dallas in two phases. In phase I, speech
data and scream data was collected from speakers, and in phase II,
data was simulated for noisy speech and scream environments.

Phase I was a combination of three parts: Part 1 consisted of
recording text dependent neutral read speech (25 TIMIT sentences).
Part 2 consists of 12 questions to be answered for recording of spon-
taneous speech. In Part 3, subjects were told to scream with pause
between scream events. More Corpus details are included in [15].
During recording, the gain of the microphone was adjusted to ensure
that signal strength was sufficient for analysis as well as to avoid
clipping at the same time. Sample audio clips of scream events are
available at http://crss.utdallas.edu/Projects/SID Scream/

In Phase II, a total of 24 audio files were generated consisting
of speech and screams with a purely random weighting balance of
speech versus scream. The duration of audio files were also random,
ranging from 30 seconds to about 4 minutes. After generation of
audio files, noise from NOISEX-92 database [16] were added using
the Filtering and Noise adding Toolbox (FaNT) [17]. Five differ-
ent types of noise, namely white Gaussian, babble, car, factory and
Volvo were added at SNR levels of 20, 10, 0, -10, and -20 dB. Clean
files were transcribed as silence/speech/scream by an expert human
annotator which was used as ground truth.

4. VOCAL ACTIVITY DETECTION

Vocal activity detection is the primary step in any non-speech acous-
tic event detection problem from continuous recordings. Therefore,
as a first step, we remove noisy non-vocal segments from these audio
streams. Most of the previously proposed detection algorithms as-
sume a homogeneous style of audio data, whereas in surveillance ap-
plications the data usually consists of a wide variety of audio depend-
ing on indoor versus outdoor situations. Our vocal activity detection
system is inspired by the recently proposed UT-Dallas Combo-SAD
system for the DARPA RATS program [7]. Combo-SAD was pre-
ferred because of its robustness towards non-homogeneous audio,
noise and channel distortions.

4.1. Combo-SAD

Combo-SAD is an unsupervised approach for speech activity detec-
tion. It uses five front-end features which are computed at frame
level. Five features include four voicing measures (harmonicity, clar-
ity, prediction gain, and periodicity) along with perceptual spectral
flux. These features are combined and normalized to form a five
dimensional combo feature vector. Both mean and variance normal-
ization is performed using,

x′i =
xi − µ
σ

. (1)

where xi is the i-th feature frame, and the corresponding mean µ and
variance σ were computed across all frames of an utterance. Finally,
this five dimensional combo feature vector is projected into single di-
mension using principle component analysis (PCA), preserving the
dimension corresponding to the largest eigenvalue. It is observed
that this one dimensional combo feature vector acts as a great dis-
criminator between vocal/non-vocal segments. The Combo feature
vector has a bimodal distribution, with values higher for vocal and
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lower for non-vocal segments. Therefore, a 2-mixture GMM is used
for classification between vocal and non-vocal segments. The mix-
ture with the higher mean is assigned to the vocal segment. The
threshold (θ) is computed using following equation,

θ = kµv + (1− k)µnv., (2)

where µv and µnv are the means of mixtures of vocal and non-vocal
respectively, and k is a weighting factor ranging from 0 to 1.

4.2. Threshold Optimization

The threshold estimation method in combo-SAD assumes that the
audio stream always contains some speech and pause in balanced
proportions. However, in the case of surveillance systems there are
generally long periods of silence during night monitoring resulting
in a greater number of false alarms. For these cases, combo-SAD
results in relatively poor estimates of the vocal and non-vocal model
distributions and threshold, resulting in high error. In order to over-
come this issue, a new solution for threshold optimization was pro-
posed in [18].

For better estimation, we first train a GMM with a larger num-
ber of mixtures (256 in this work) using an annotated speech corpus
(usually Switchboard, Fisher etc.). Next, we project the means of
this GMM onto a single dimension decision space of combo-SAD.
We denote the mean of these projected values as µtv .

Here, µtv (developed using a secondary speech corpus) and µv

(developed using combo-SAD) is denoted as prior and posterior
models of speech or vocalizations. For decision making on the
vocalized GMM, we use the following criteria: (i) if µv ≥ µtv , we
use the posterior model; (ii) if µv < µtv we use the prior model.
Therefore, the new method for threshold estimation is,

θ = kmax(µv, µtv) + (1− k)µnv. (3)

A block diagram of threshold optimized vocal activity detection is
shown in Fig. 1. Hence, the proposed approach achieves better de-
cision making in regions where there is more silence compared to
speech using a prior model for decision making.

5. COMPOUND SEGMENTATION ALGORITHM

After removing silence and noisy portions from the audio streams,
next we detect the boundaries of scream and speech. Most distance
metrics used for segmentation such as BIC or Kullback-Leibler dis-
tance (KL2), result in more estimation error if the data is insufficient
because they require second order statistics (i.e., the covariance).
The T 2-statistic combined with BIC has previously been used to
formulate audio stream segmentation/SAD, resulting in the T 2-BIC
algorithm[8], be employed in a new scenario here for scream detec-
tion.

CompSeg is an unsupervised algorithm, first proposed by Huang
and Hansen [9], which detects the input acoustic change points based
on features and uses three different distance metrics based on the
length of the analysis window size. It also improves segmentations
for short segments which are generally used in speaker ID trials.
This algorithm uses an equal covariance assumption. Thus, more
data is used for covariance estimation thereby reducing the effect of
insufficient data in the estimation process. One more assumption is
that if the analysis window is less than 2 sec., we assume the global
covariance to be an identity matrix, which is termed as weighted
mean distance. The distance metric rules for the CompSeg algorithm
is summarized:
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• Lw < 2s: weighted mean distance,

• 2s ≤ Lw < 5s: T 2-distance,

• Lw ≥ 5s: traditionl BIC,

here, Lw is the length of the analysis window. The weighted mean
and T 2 distance collectively are called T 2-mean, which is used for
the processing window of size < 5s. For windows of size > 5s, the
traditional BIC [19] is applied to detect break points.

6. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed scream
detection approach. For evaluations, data was down sampled to
8kHz. First, we have processed the continuous audio streams
through threshold optimized combo-SAD for vocal activity de-
tection, and then used CompSeg for speech/scream detection.

6.1. TO-Combo-SAD Results

For TO-Combo-SAD, combo features were extracted using a frame
size of 40ms and a skip rate of 10ms. The threshold was optimized
using the approach described in Sec. 4.2, for this task k=0.4 was
used in Eq. (3). Performance of the vocal activity detection system
was computed in terms of equal error rate (EER). The results for TO-
Combo-SAD are shown in Fig. 2. We observe that for low levels of
noise, the EER is below or near 10% but as noise levels increase, the
EER degrades rapidly (i.e. EER ∼50%).
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Fig. 4. Scream/Speech detection results for MFCC (top) and
PMVDR (bottom) front-end.

6.2. CompSeg Scream/Speech Detection Results

After vocal activity detection, silence and noisy frames were dis-
carded from the continuous streams. The remaining stream was fur-
ther processed and the compound segment detection algorithm ap-
plied. CompSeg can be used with a number of front-ends [9]. For
CompSeg evaluation, we have used two front-ends. Performance
was evaluated in terms of percentage F-measure.

6.2.1. Mel-frequency cepstral coefficients(MFCC)

MFCCs are the most common features used for analysis of speech.
They are computed by applying a Mel-scaled filter bank either to the
short-term FFT magnitude spectrum or short term LPC-based spec-
trum to obtain a perceptually meaningful smoothed overall spectrum.
DCT is then applied.

6.2.2. Perceptual minimum variance distortionless response (PMVDR)

The PMVDR feature is obtained by incorporating perceptual warp-
ing of FFT power spectrum, and replacing the Mel-scaled filter bank
with the minimum variance distortionless response (MVDR) spec-
tral estimator. The MVDR based spectrum has a better spectral mod-
eling ability for high pitch signals [10]. In previous studies, PMVDR
has been found to perform better than MFCC for scream modeling
[15].

A total of 36-dimension features were computed for both MFCC
and PMVDR which include 12 static, delta and delta-delta. We use a
frame rate of 100 frames/sec, where each frame is 20 ms in duration
with an overlap of 50% between adjacent frames.

Fig. 3 illustrates the TO-Combo-SAD decision and detected
break points for scream in a continuous audio stream. The overall
detection results for both the front-ends are summarized in Fig. 4.
We have observed that for upto 10dB SNR, the proposed scream de-
tection algorithm provides satisfactory performance. Even for noise

types volvo and car performance is above 60% for 0dB. However
for noise type babble, factory and WGN, the system performance is
near zero at low SNRs of -10dB and -20dB. Therefore, the ability
to detect screams in continuous audio streams over a range of noise
type have been shown up to 10dB SNR.

7. CONCLUSION AND FUTURE WORK

In this study, we presented an unsupervised approach for robust de-
tection of human screams and applied it across continuous noisy au-
dio recordings. The proposed approach is a hybrid solution which
combines threshold optimized combo-SAD and a CompSeg system.
It has been shown that the proposed algorithm is noise robust and
gives better performance even at SNR levels as low as 0dB for noise
types car and volvo. In future work, we plan to extend this algo-
rithm for the UT-Non-Speech II corpus which includes more than
two hours of screams along with speech from 57 speakers. Percep-
tual tests will also be conducted to compare human vs. machine
detection accuracies.
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