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ABSTRACT

Audio thumbnailing, which aims at finding the most representative
audio segment of a music recording, is an important task in music
information retrieval. In general, the notion of a thumbnail is not
well-defined and several musical parts may be good thumbnail can-
didates. For example, for popular music, both a verse and a refrain
section may serve as suitable thumbnail candidates. Instead of con-
sidering only one thumbnail, we consider in this paper the problem
of finding the two most representative segments that correspond to
different musical parts. We denote these two segments as double
thumbnails. As our main technical contributions, we propose two
approaches for computing double thumbnails, both extending a pre-
viously introduced repetition-based thumbnailing procedure. In the
first approach, which is straightforward, we simply apply the origi-
nal thumbnailing procedure two times in an iterative fashion. In the
second approach, we introduce a novel method for jointly estimat-
ing the two thumbnails within one optimization procedure. Finally,
we report on experimental results demonstrating the performances
of the two double thumbnailing procedures and indicate directions
towards full music structure analysis.

Index Terms— Music, Thumbnailing, Repetition, Structure,
Segmentation

1. INTRODUCTION

Automatic music structure analysis constitutes a central research
topic in the field of music information retrieval [1]. A prominent
subproblem, which is closely related to music structure analysis,
is the audio thumbnailing task, where the objective is to automat-
ically determine the most representative segment of a given music
recording [2, 3, 4, 5, 6, 7]. Typically, such a segment has many
(approximate) repetitions throughout the piece, which makes lis-
teners remember this segment as a representative for the piece of
music. Therefore, most automated thumbnailing procedures aim to
identify a structural section with many repetitions as the thumbnail
segment [1, 8, 9, 10, 11, 12, 13].

In general, the notion of a thumbnail is not clearly defined and
several musical parts may be good thumbnail candidates. Different
listeners may have different preference on choosing a segment as the
thumbnail for a certain piece of music. For example, in popular mu-
sic, both a verse or a refrain section may serve as a suitable thumb-
nail candidate. Therefore, instead of considering only one thumb-
nail, in this paper we consider the problem of finding the two most
representative segments that correspond to different musical parts.
We denote these two segments as double thumbnails. Figure 1 shows
an example for such double thumbnails (horizontal axis).

Another motivation of estimating double thumbnails is that such
estimation can help for performing a full structure analysis of a piece
of music. A thumbnail and its related repetitions often correspond

Fig. 1. Illustration of the double thumbnails computed for the Beat-
les song “Devil In Her Heart” using the joint approach. The double
thumbnails (horizontal axis) exactly corresponds to a V (verse) and a
R (refrain) section in the ground truth segmentation (indicated by the
colored rectangles). We also present the computed optimal joint path
family (cyan paths), and its induced segments (vertical axis) which
correspond to the two main repetitive verse and refrain parts in the
ground truth. Note that the O (outro) part annotated in the ground
truth is actually a fading version of the refrain part.

to an important structure part of the music. Therefore, by estimat-
ing multiple thumbnails, distinct categories of structural parts may
be derived. Figure 1 indicates two such structural parts and their
repetitions (vertical axis). In particular, the structure of popular mu-
sic often consists of only two main repeating sections which are the
verse and the refrain, whereas other sections such as the intro and
the bridge sections are not repetitive. For such pieces, by estimat-
ing double thumbnails and their repetitions for such pieces, we can
already identify the entire music structure.

In our previous work [7], a thumbnailing procedure was intro-
duced in order to find the most repetitive segment for a music record-
ing. In this paper, we build upon this procedure and with the goal to
find double thumbnail segments. As main contributions of this pa-
per, we propose two approaches for computing double thumbnails
(related to the two most repetitive sections) for a music recording.
In the first approach, we simply apply the original thumbnailing pro-
cedure two times in an iterative fashion. In the second approach,
we compute the two thumbnails within one optimization procedure
that tries to jointly maximize the score and coverage of two differ-
ent disjoint segments. Furthermore, by extracting the repetitions of
thumbnail segments, we can also identify large portions of the repet-
itive structures of the music recording.

The remainder of this paper is organized as follows. First, we
briefly summarize our previous work in Section 2. Then, we in-
troduce the iterative approach in Section 3 and the joint approach
in Section 4. Finally, we report on our systematic experiments and
conclude in Section 5.
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Fig. 2. Illustration of the iterative approach for computing double
thumbnails for the Beatles song “Birthday”. We present the en-
hanced self-similarity matrix (SSM), the thumbnail segment (hori-
zontal axis), its optimal path family (cyan colored), and the induced
segments (vertical axis). The colored rectangles indicate the ground
truth structure annotation. (a) The first round computation (the orig-
inal thumbnailing procedure). (b) The second round computation.
Note that some regions which correspond to the induced segments
of the first round are deleted in the SSM.

2. THUMBNAILING PROCEDURE

Before we introduce the estimation of double thumbnails, we first
briefly describe the original thumbnailing procedure proposed in [7].
The main idea is to compute a fitness measure that captures repet-
itiveness as well as coverage for each possible segment of a given
audio recording [7]. In the computation of the fitness measure, first
an enhanced self-similarity matrix (SSM) is computed on the ba-
sis of chroma features [14] extracted from the music recording. To
deal with local tempo differences and local key changes between
the repetitions, we enhanced the SSM to achieve a higher degree of
transposition invariance and tempo invariance [15]. Next, for each
segment, an optimal path family that simultaneously reveals the re-
lations between the segment and all other similar segments is com-
puted. By projecting such an optimal path family to the vertical axis,
one obtains an induced segment family, where each element in this
family is similar to the given segment. Note that by our imposed
constraints, these induced segments can not overlap with each other.
The fitness measure of a segment is associated with some kind of
score and coverage of the optimal path family. After that, we com-
pute fitness values for all possible segments of an audio recording
and select the segment with the maximum fitness as the thumbnail.
As an illustration, Figure 2a shows the thumbnail segment, the op-
timal path family of the thumbnail, and the induced segments. By
comparing the thumbnail to the ground truth annotation, we can see
that it corresponds to the third V (verse) part in the annotation. Fur-
thermore, three of the four induced segments correspond to the three
annotated V parts. The first induced segment (the bottom one on the
vertical axis) corresponds to the I (Intro) part, however, this intro is
actually an instrumental version of the verse and can be considered
as a special “verse”.

3. THE ITERATIVE APPROACH

In the example shown in Figure 2, according to the ground truth an-
notation, the most repetitive part is the V sections. Furthermore, the
B (bridge) part is also repeated. To detect the B part sections, one
idea is to first exclude the V part sections from further considerations
and then to again apply the thumbnailing procedure on the remainder
of the recording. By excluding the induced segments of the previ-

ous iteration and re-estimate the thumbnail segment, we can derive
double thumbnails and their repetitive sections.

To illustrate the behavior of this iterative approach, we revert
to the example in Figure 2. The first round of the approach works
exactly as the original thumbnailing procedure (Figure 2a). In the
second round, the approach deletes those regions which correspond
to the induced segments of the first round from the SSM and applies
the thumbnailing procedure again. This yields the result shown in
Figure 2b. By comparing this result to the ground truth, we can see
that the thumbnail in Figure 2b exactly correspond to the B part, and
its induced segments go along with all repetitive B sections. In this
way, in two rounds of computation, we successfully identified all
repetitive parts of this audio recording.

One problem of the iterative approach is that the thumbnail es-
timated in the second round is dependent on the result of the first
round. Therefore, if the estimation of the thumbnail and its induced
segments is erroneous, the identification of other repeating sections
in the next round becomes problematic. Instead of this “greedy”
iterative approach, we consider an alternative approach in the next
section.

4. THE JOINT APPROACH

We now introduce a second approach, named “joint approach”,
which optimizes the estimation of two thumbnail segments simulta-
neously. Based on our definition of the fitness measure that captures
repetitiveness of one segment [7], we now extend it and propose a
joint fitness measure to capture the repetitiveness of a pair of seg-
ments. We closely follow the notations which originally introduced
in [7] and extend some definitions.

4.1. Joint Path Family

Let X = (x1, x2, . . . , xN ) be a feature sequence and S ∈ RN×N
an enhanced self-similarity matrix. We denote two disjoint segments
as: α = [s1 : t1] ⊆ [1 :N ] and β = [s2 : t2] ⊆ [1 :N ] where s1 ≤
t1 < s2 ≤ t2. Let |α| := t1− s1 + 1 and |β| := t2− s2 + 1 denote
their lengths, respectively. A path over α having path length L is a
sequence pα = ((n1,m1), . . . , (nL,mL)) of cells (n`,m`) ∈ [1 :
N ]2, ` ∈ [1 : L], satisfying m1 = s1 and mL = t1 (boundary
condition) and (n`+1,m`+1)− (n`,m`) ∈ Ω (step size condition).
We use

Ω = {(1, 2), (2, 1), (1, 1)}, (1)

which constrains the slope of a path within the bounds of 1/2 and 2

(see [16]). The score of pα is defined as σ(pα) =
∑L
`=1 S(n`,m`) .

For a path p, we associate two segments defined by the vertical pro-
jection π1(p) := [n1 :nL] and horizontal projection π2(p) := [m1 :
mL]. By definition we have π2(pα) = α. The projection of a path
onto the vertical axis, π1(pα), is referred as an induced segment of
a path pα. Similarly, we introduce the notion of a path pβover the
segment β.

Extending the notion of a path family [7], we introduce a joint
path family over α and β, which is a set

Pαβ := {pα1 , . . . , pαU , pβ1 , . . . , p
β
V } (2)

of size U + V , consisting of paths pαu over α and paths pβv over
β, where u ∈ [1 : U ] and v ∈ [1 : V ]. Recall from Section 2
that the induced segments of a path family cannot overlap with
each other. We also impose this constraint to the induced seg-
ments of a joint path family. In other words, we require that the set
{π1(pα1 ), . . . , π1(pαU ), π1(pβ1 ), . . . , π1(pβV )} consists of pairwise
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Fig. 3. Illustration of the optimization scheme in computing the ac-
cumulated score matrix D. The differently colored regions and ar-
rows indicate the various step conditions as explained in the text.

disjoint segments. Next, extending the definition for the score of a
path, we define the score for a joint path family as

σ(Pαβ) :=

U∑
u=1

σ(pβu) +

V∑
v=1

σ(pβv ). (3)

There are in general many possible joint path families over α and
β. Among these path families, there exists an optimal path family of
maximal score, defined as

P∗αβ := argmax
Pαβ

σ(Pαβ). (4)

4.2. Optimization Scheme

Based on the optimization scheme introduced in [7], we now de-
scribe a modified algorithm that can efficiently compute an opti-
mal joint path family. Let X = (x1, x2, . . . , xN ) be the feature
sequence of the entire audio recording, Y := (xs1 , . . . , xt1) and
Z := (xs2 , . . . , xt2) the feature sequences corresponding to α and
β, respectively. Based on DTW (Dynamic Time Warping, see, e. g.,
[17, 16]), we use a modified version to simultaneously align paths
between Y (or Z) and some sub-sequences ofX , with the constraint
that no overlaps between these sub-sequences ofX are allowed. The
goal is to determine the optimal alignment that defines the optimal
joint path family of maximal score. Note that we impose the en-
tire segments of α and β to be aligned with sub-sequences of X .
Furthermore, to skip some sub-sequences of X which are neither
similar to α nor to β, certain sections of X can be left completely
unconsidered in the alignment.

To account for these constraints, we introduce some new steps
that allow us to skip certain sections of X and to jump from the end
to the beginning of the given segment α (or β). First, we define an
N × (M1 + M2) submatrix Sαβ by taking the columns s1 to t1
and s2 to t2 of S. Next, we introduce an accumulated score matrix
D. By setting different step conditions for different regions in D,
we realize the above mentioned constraints. To this end, we define
D ∈ RN,(1+M1+M2), (with rows indexed by [1 : N ] and columns
indexed by [0 : (M1 +M2)]), by the following recursion:

D(n,m) = Sαβ(n,m) + max{D(i, j) | (i, j) ∈ Φ(n,m)} (5)

for n ∈ [2 : N ] and m ∈ [2 : M1] ∪ [(M1 + 2) : (M1 +M2)] (the
yellow regions in Figure 3), where

Φ(n,m) = {(n− i,m− j) | (i, j) ∈ Ω} ∩
{[1 :N ]×([1 : (M1 − 1)] ∪ [(M1 + 1):(M1 +M2 − 1)])}

(6)

denotes the set of possible predecessors (see the black arrows in Fig-
ure 3). So far, these definitions are used for computing the accumu-
lated score during path alignments.

Then, we need to allow for the possible skipping of sections in
X . Similar as in [7], the first column of D indexed by m = 0 plays
a special role, and it is recursively defined as:

D(n, 0) = max{D(n−1, 0), D(n−1,M1), D(n−1,M1 +M2)}
(7)

for n ∈ [2 :N ] and initialized by D(1, 0) = 0 (see the green region
and the purple arrows in Figure 3). The term D(n − 1, 0) enables
the algorithm to move upwards without accumulating any (possi-
bly negative) score, thus allows for skipping some sections of X
without penalty (negative score). Note that the term D(n − 1,M1)
closes up a path over α, and the term D(n − 1,M1 + M2) closes
up a path over β. The later two terms ensure that the entire segment
α or β is aligned to the sub-sequence of X , and the next possible
sub-sequence of X to be aligned does not overlap with the previous
aligned sub-sequence.

After introducing how we align a path and close a path, now we
present how we start a new path. This is realized by controlling the
column for m = 1 and m = M1 + 1 in D which correspond to the
beginning of α and β,respectively. We define the new constraints as:

D(n, 1) = D(n, 0) + Sαβ(n, 1) (8)

D(n,M1 + 1) = D(n, 0) + Sαβ(n,M1 + 1) (9)

for n ∈ [1 : N ] (see the pink regions and the red arrows in Figure 3).
Finally, to initialize the D matrix, we set D(1,m) = −∞ for

m ∈ [2 : M1] ∪ [(M1 + 2) : (M1 + M2)] (see the blue region
in Figure 3), which forces the first path to start either with the first
element of α or the first element of β. Based on these definitions,
the score of an optimal joint path family is then given by

σ(P∗αβ) = max{D(N, 0), D(N,M1), D(N, (M1 +M2))} (10)

(see the shadowed cells in the top row in Figure 3). The first term
D(N, 0) reflects the situation that the optimal path family may
skip the alignment with final section of X , and the later two terms
D(N,M1) and D(N, (M1 + M2)) ensure that for the other cases,
the last path is either aligned with the entire segment α or with the
entire segment of β. The associated optimal joint path family P∗αβ
can be derived from D by using a back-tracking algorithm as in
classical DTW (see [16, Chapter 2]).

4.3. Joint Fitness Measure

We now define the new joint fitness measure. Similar as in [7],
we associate the joint fitness measure for a pair of segments with
their optimal joint path family. We consider two properties of the
joint path family, which are the score and the coverage. In addi-
tion, the contribution of a segment itself to the score and the cov-
erage need to be excluded, otherwise the segment representing the
entire audio file will get the maximum score and coverage, which
we do not want. First, we consider the score measurement. Let
P∗αβ = {pα1 , . . . , pαU , pβ1 , . . . , p

β
V } be an optimal path family for a

pair of segments α and β. Then, the normalized score σ̄(α, β) is
defined as:

σ̄(α, β) :=
σ(P∗αβ)− |α| − |β|∑U
u=1 L

α
u +

∑V
v=1 L

β
v

(11)

where Lαu and Lβv are the lengths of the respective paths pαu and pβv
from the optimal joint path family. Second, we consider some kind
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Fig. 4. Illustration of the structure segmentation result derived from
the two proposed approaches for Beatles song “Devil In Her Heart”.
(GT) Ground truth structure segmentation. (a) Estimation result by
the iterative approach. (b) Estimation result by the joint approach.

of coverage measure. Let A∗αβ := {π1(pα1 ), . . . , π1(pαU ), π1(pβ1 ),

. . . , π1(pβV )} be the segment family induced by P∗αβ , and let
γ(A∗αβ) be the coverage of this induced segment family, which
is defined as:

γ(A∗αβ) =

U∑
u=1

|π1(pαu)|+
V∑
v=1

|π1(pβv )|. (12)

Then, the normalized coverage γ̄(α, β) is defined as:

γ̄(α, β) :=
γ(A∗αβ)− |α| − |β|

N
. (13)

Finally, combining the normalized score and the normalized cov-
erage, we define the joint fitness measure for α and β to be their
harmonic mean:

ϕ(α, β) := 2 · σ̄(α, β) · γ̄(α, β)

γ̄(α, β) + σ̄(α, β)
. (14)

Similar as in [7], among all possible pairs of segments of an
audio recording, the double thumbnails are defined to be the pair of
segments of maximal joint fitness:

(α, β)∗ := argmax
α,β

ϕ(α, β). (15)

As an illustration of our joint approach, Figure 1 shows the es-
timated result of double thumbnails for Beatles song “Devil in Her
Heart” as well as the optimal joint path family and its induced seg-
ment family. These induced segments are then transferred into the
structure segmentation as can be seen in Figure 4b. Here, we see that
the induced segments (denoted by the A and B sections) successfully
reveal the V and R parts in the ground truth, respectively. As a com-
parison, we also shows the result of the iterative approach computed
for this song in Figure 4a. We can see that the iterative approach
estimated a thumbnail which is too long in the first round, thus result
in the problematic estimation of the thumbnail in the second round.

5. EVALUATION

We now describe our systematic evaluation. So far we have not seen
a public standard evaluation for double thumbnails. Therefore, in
order to be comparable with other algorithms, we use one standard
MIREX evaluation measure for music structure segmentation [19],
which is the pairwise frame clustering evaluation presented in F-
measure (F), Precision (P) and Recall (R) [20]. Note that in this
paper we use the full structure evaluation as a measure for illustrat-
ing the performance of our double thumbnailing technique. As an
example scenario, we use the Beatles dataset which contains 180
recordings of “The Beatles” and the ground truth structure annota-
tions [21]. For each recording, we apply the iterative approach and

Approach F P R
Serra [22] 0.71 0.68 0.79
Iterative 0.69 0.71 0.70
Joint 0.68 0.77 0.64
Max 0.74 0.79 0.73
UpperLimit 0.97 0.97 0.97

Table 1. Structure evaluation results using the pairwise frame clus-
tering P/R/F values averaged on the Beatles dataset.

the joint approach 1, obtaining two kinds of double thumbnails as
well as their induced segments. For both approaches, we treat the
resulting induced segments as a kind of music structure segmenta-
tion and evaluate them using the above mentioned measure. In our
experiments, we use a feature resolution of 2 Hz.

Table 1 shows the evaluation result for various approaches. For
comparison, the first row shows the results of an state-of-the-art al-
gorithm for full structure analysis suggested by Serra et al. [22],
where he gets an F-measure of 0.71. Using our proposed meth-
ods, the iterative approach yields an F-measure of 0.69, and the joint
approach gets an F-measure of 0.68. By individual inspection, we
found that the joint approach outperforms the iterative approach far
better for some of the songs, but works worse for some other songs,
which is mainly due to over-segmentation. After that, in order to see
what we can best achieve, we select for each song the better result
of the two approaches, and average over all songs to generate the
max possible result we can get. This yields an F-measure of 0.74
shown in the fourth row, which is roughly 0.05 higher compared to
either of the two approaches. Such difference indicates that the two
approaches actually behave differently on various songs. Also, it
shows that if we select the appropriate approach for various songs,
we can further improve in structure segmentation that outperform
other algorithms. Finally, in the last row we present the theoretical
upper limit of the result that using double thumbnails estimation. To
this end, we extract sections of the two most repetitive parts from
the ground truth as our “computed” result, and further evaluate them
with the original ground truth which consists of all sections. This
yield an F-measure of 0.97. Comparing to this upper limit, the re-
sults above indicate that all those approaches somehow hit a practical
ceiling. In addition, this very high value also supports our assump-
tion that for Beatles dataset (representative of popular music), most
songs have only two main repeating sections. Therefore, our double
thumbnail estimation fits well in popular music scenario.

In conclusion, we introduced two novel different approaches for
estimating double thumbnails. By deriving repetitive sections of the
double thumbnails, we also contribute to the full structure analysis
especially for music pieces with two repetitive parts as main struc-
tures.
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1In practice, it is too expensive to compute joint fitness values for all pos-
sible pairs of segments of an audio recording. Therefore, we use a sampling
and refinement acceleration strategy as introduced in [18], to compute joint
fitness values only for a limited number of segment pairs.
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[22] Joan Serrà, Meinard Müller, Peter Grosche, and Josep Ll. Ar-
cos, “Unsupervised music structure annotation by time series
structure features and segment similarity,” IEEE Transactions
on Multimedia, vol. 16, no. 5, pp. 1229–1240, 2014.

150


