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ABSTRACT

Monaural singing voice separation has aroused considerable
attention. Many pitch-based methods have been proposed
to address this task, but generally have limited performance.
The most crucial difficulties lie in the inaccurate judgmen-
t on voiced pitches and the failed recognition on unvoiced
singing sounds. In this paper, we propose a novel algorith-
m based on the latent component analysis of time-frequency
representation to overcome these difficulties. Specifically, the
time-frequency (T-F) representations of the song are firstly
decomposed into components, and each component approxi-
mately originates from a single sound source. We then con-
struct non-overlapping T-F segments with these components,
to complete the omitted useful singing voice information. Ex-
tensive experiments on the MIR-1K public dataset shows the
effectiveness of the proposed algorithm.

Index Terms— Singing voice separation, Pitch-Based In-
ference, Latent Time-Frequency Component Analysis

1. INTRODUCTION

Separating singing voice from accompaniment has many ap-
plications in music information retrieval (MIR). To perform
this separation, a number of algorithms have been proposed
in recent years and many of them are within the framework
of pitch-based inference [1, 2, 3, 4, 5, 6, 7]. It is known that
singing voice is primarily comprised of voiced sounds, which
are roughly harmonic, with frequencies of concurrent over-
tones being approximately integer multiples of the fundamen-
tal frequency (F0). Pitch-based inference algorithms utilize
the harmonic structure of singing voice, and first extract the
singing pitch as the cue for subsequent separation.

Unfortunately, pitch-based singing voice separation algo-
rithms have several limitations. Firstly, they highly rely on
the technique of singing pitch detection from polyphonic song
mixtures, which, however, remains an open problem and has
not been maturely solved so far [8]. As a premise, if the de-
tected pitch is inaccurate, the harmonic structure of singing
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voice cannot be correctly identified. Secondly, although the
majority of singing voice is voiced sounds, a small part of
unvoiced sounds do exist. Having no underlying periodici-
ty, unvoiced singing sounds cannot be characterized by pitch
and further effectively separated from accompaniment using
most existing pitch-based inference algorithms [4]. Both of
the above factors result in poor vocal separation performance.

In this paper, we propose an algorithm for singing voice
separation in monaural mixtures, based on the latent time-
frequency component analysis of time-frequency represen-
tations of the original input song mixture, to overcome the
limitations and complete the missing information discussed
above. Firstly, each input song is expressed as a set of T-
F matrices. We decompose each matrix into components by
Non-negative Matrix Factorization (NMF), each of which ap-
proximately originates from a single sound source. Then we
construct non-overlapping T-F segments with the indepen-
dent components and complete the corresponding missing in-
formation caused by the inaccurate detection and unvoiced
singing sounds which cannot be described by pitch. Admit-
tedly there have been several attempts that combine pitch-
based inference with NMF for monaural singing voice sepa-
ration (e.g., [2] and [9]). In these methods, NMF is generally
used to model or estimate the music accompaniment which is
quite different from us. Experiments on the MIR-1K public
dataset show that our proposed algorithm is rather effective.

2. PROPOSED ALGORITHM

The proposed singing voice separation algorithm follows the
standard pitch-based inference framework in [1], which con-
sists of three stages, as described in Sec. 2.1. We then illus-
trate the proposed algorithm which improves this framework,
particularly the third stage, to complete the missing informa-
tion by analyzing latent component of T-F matrix and further
generating the non-overlapping T-F segments in Sec. 2.2.

2.1. Preprocessing

Singing Voice Detection The first stage is to locate singing
voice portions in each input song mixture by using a hidden
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Markov model (HMM)-based classification method. We use
39-dimensional MFCCs formed by 12 cepstral coefficients
plus the log energy, together with their first and second or-
der derivations. These features are extracted from Hamming-
windowed frames of 40 ms with an overlap of 50%, and cep-
stral mean normalization is applied to reduce channel effect-
s. The HMM for classification has two states, i.e., vocal
and nonvocal, whose output distributions are represented by
32-component diagonal-covariance Gaussian mixture models
(GMMs) trained from MFCCs of the vocal and the nonvocal
frames respectively. The transition probabilities of the HMM
are obtained by frame counting in training set. During testing,
the Viterbi algorithm is used to decode given sound mixtures
into vocal and nonvocal portions.
Singing Pitch Detection In this stage, the well-known
autocorrelation-based F0 estimator YIN algorithm [10] is
applied on each input song mixture to extract the singing
pitch contour. The reason that we us YIN instead of a multi-
pitch detection algorithm is twofold. First, the performance
of current multi-pitch detection algorithms is rather limited.
Second, singing voice is usually the most predominant part in
popular songs, approximating the case of monophonic music.
We set the frame length 40 ms with an overlap of 50%, and
the F0 range 80∼500 Hz. Since the pitch is detected as the
cue for vocal separation, only the pitch contours of the vocal
portions are retained for further processing and evaluation.
Singing Voice Separation In this stage, the singing voice
is separated from each song mixture by using the detected
singing pitch. This starts with an auditory peripheral mod-
el for T-F decomposition. First, the input mixture is passed
through a 128-channel gammatone filterbank, whose center
frequencies are equally distributed on the equivalent rectan-
gular bandwidth (ERB) scale between 80 Hz and 5 kHz. The
output signal of each filter is then divided into half-overlapped
40-ms frames. In this way, the song mixture is decomposed
into a collection of T-F units. Each unit is denoted as ucm,
where c and m are indexes of the filter channel and the time
frame respectively.

Then, the next step is to estimate the ideal binary mask
(IBM). The IBM is a binary matrix, where 1 means that the
energy of singing voice is stronger than that of accompani-
ment within the corresponding T-F unit and 0 indicates weak-
er [11]. To estimate this mask, [1] and [4] use a periodicity
criterion, where a T-F unit is identified as singing dominant
and labeled with 1 if it is located in a vocal frame and its local
periodicity matches the detected pitch of the frame, otherwise
the T-F unit is deemed as accompaniment dominant and la-
beled with 0. Specifically, for a T-F unit ucm corresponding
to the filter channel c at the time frame m, it is identified as
singing dominant if the frame m is classified as vocal and
ucm satisfies acfcm(τm)

max2≤τ≤12.5(ms) acfcm(τ) ≥ θ, where acfcm(τ) is
the autocorrelation function of ucm, τ ∈ [0, 200] ([0, 12.5 m-
s]) is the time delay, τm is the time delay corresponding to the
detected pitch at frame m, and θ is a threshold. In [4], θ is set

to 0.99. We follow this setting in our implementation.
The singing voice is finally resynthesized from the masked

T-F representation of the original song mixture. This is per-
formed by applying the inverse of gammatone filterbank and
the technique of overlap and addition.

2.2. Latent Component Analysis of T-F matrix

Unfortunately, since the section above uses pitch as the only
cue, it essentially cannot recognize time-frequency units dom-
inated by unvoiced singing sounds. Besides, due to the inac-
curacy of the detected pitch, the proposed approach incorrect-
ly identifies many voiced singing-dominant time-frequency u-
nits as accompaniment dominant. However, these two types
of errors influence the step of using binary mask. The corre-
sponding matrix elements are marked 0 (the accompaniment
sound) instead of the right 1 (the singing voice). In this pa-
per we employ the latent component of T-F matrix to refine
the inner properties of relationship with the units labeled 1
and labeled 0. With the refined information, we can construct
T-F segments that indicate possible pitch areas in T-F matrix
and further relabel the mask matrix to recover the neglected
information mentioned above to provide final singing voice
separation results.

We obtain the latent components of T-F matrices by the
Non-negative Matrix Factorization (NMF) [12] technique. To
the best of our knowledge, there is no prior work investigat-
ing the latent component of T-F matrix to recover the neglect-
ed information like the proposed algorithm in singing voice
separation.

Given a non-negative matrix X of dimensions C×M and
a positive integer R, NMF finds an approximate factorization

X ≈WH (1)

where W and H are non-negative matrices of dimensionsC×
R and R×M respectively.

Recently, NMF and its extensions have been successfully
applied for monaural sound source separation [13, 14]. In this
case, the observation matrix X is typically a phase-invariant
T-F representation of the input sound mixture, where C is
the number of frequency bins and M is the number of time
frames. The model matrices, W and H, are basis matrix and
gain matrix respectively, where the columns of W are spectral
bases and the rows of H are their gains in each frame. Each
spectral basis and its time-varying gain are referred to as a
component and there are thus R components in total.

Generally, each component represents parts of a single
sound source and each sound source in the mixture is modeled
as a sum of one or more components. We employ the very
point as the criteria for cluster. The specific procedures are
as follows. Consequently, sound source separation is done by
first decomposing the sound mixture into NMF components
and then grouping these components to sound sources.
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The factorization of NMF, Eq. (1), is usually sought by
minimizing a chosen cost function between X and WH while
restricting their elements to non-negative values. In this pa-
per, we choose the Kullback-Leibler divergence as the cost
function and apply the multiplicative update rules proposed
in [15] to solve the minimization problem.

1. Construct an energy matrix X of T-F units. The ele-
ment Xcm corresponding to ucm is calculated as

Xcm =

N∑
n=1

u2cm(n) (2)

where ucm(n) is the nth sample in ucm, N is the frame
length in samples. Obviously, X is a non-negative ma-
trix of dimensions C × M , where C = 128 is the
number of frequency bins and M is the number of time
frames.

2. Perform NMF on the obtained matrix X to decompose
it into a set of components. Given the factorization
X ≈WH and the number of components R (R = 60
in our implementation), a component here is denoted
as Xr, r = 1, . . . , R being the component index, and
represented as a T-F matrix. The T-F matrix representa-
tion of Xr is calculated from its spectral basis (i.e., the
rth column of W) and the temporal gain (i.e., the rth

row of H). Specifically, the matrix element at position
(c,m) is computed as

Xr = wrhr. (3)

where wr is the rth column of W, hr is the rth row
of H). Based on the property of NMF, each component
approximately originates from a single sound source.

3. Generate a T-F segment from each component obtained
above. Specifically, for a given component Xr, its T-F
representation is compared with those of other compo-
nents, with the elements satisfying Eq. (4) selected.

Xr
cm =

R
max
i=1

Xi
cm. (4)

In general, each selected element Xr
cm corresponds to

a T-F unit ucm, and all these T-F units form a segment
Sr corresponding to Xr.

Fig. 1 illustrates how to generate T-F segments from NMF
components. For a given component, red elements in its T-F
representation are those satisfying Eq. (4), meaning that they
are larger than all the green elements in the same positions of
other T-F representations. Typically, each red element corre-
sponds to a T-F unit with the same index, and all these units
form the segment corresponding to the given component.

As a result of the above procedure, the input song mix-
ture is decomposed into a set of T-F segments, each of which
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Fig. 1. The generation of T-F segments from latent compo-
nents. Please refer to Eq. 4 and the related illustrations for
details. (best viewed in color)

is indivisible, with energy primarily originating from a single
sound source. With the constraint of Eq. (4), these segments
are non-overlapping, i.e., a T-F unit only belongs to a single
segment. In other words, segments are disjoint clusters of T-F
units, and all the T-F units included in a segment are dominat-
ed by the same sound source. Given this property, a T-F unit
can be labeled based on not only the periodicity information
provided by the singing pitch, but also the origination of the
segment that it belongs to. Given the T-F segments, we now
describe how to estimate the IBM by using pitch and segment
as two complementary cues. First, let M0 be the mask com-
puted using the conventional pitch-based inference method.
Then, the segment cue is considered to get additional mask-
ing information. To be specific, for each segment, if more
than 10% of its belonging T-F units have been identified as
singing dominant by the pitch-based method, the whole seg-
ment is deemed as originating from vocals and all its T-F units
are labeled with 1. This forms a new masking matrix, denot-
ed as M1. The final estimation of IBM, denoted as M, is the
combination of M0 and M1, i.e.,

M = M0‖M1 (5)

where A‖B is the element-wise logical OR operation of ma-
trices A and B.

3. EVALUATION

The evaluation is carried out on the MIR-1K public dataset
[4], which contains 1000 song clips sampled at 16 kHz, with
durations ranging from 4 to 13 s. These clips are extracted
from 110 karaoke Chinese pop songs performed by male and
female amateurs, with accompaniment and vocals recorded in
the left and right channels, respectively. On the basis of the
1000 song clips, we create three sets of monaural mixtures
at different qualities for evaluation. To be exact, for each
original song clip in MIR-1K, the singing voice and music
accompaniment are mixed at three different signal-to-noise
ratios (SNRs), i.e., −5 dB (accompaniment is louder), 0 dB
(same level), and 5 dB (singing voice is louder). Note that in
this circumstance, signal refers to the singing voice, while the
accompaniment is deemed as noise.
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Fig. 2. Performance of (a) singing voice detection, (b) singing pitch detection, (c) singing voice separation.

3.1. Evaluation for Singing Voice Detection

1) Dataset Description: All 1000 song clips of MIR-1K
are used to evaluate the performance of singing voice detec-
tion. Since the detection is based on supervised classification,
the whole dataset is further divided into two non-intersecting
subsets with nearly equal size (483 vs. 517) for training and
testing. The final results are given through two-fold cross val-
idation.

2) Performance Measure: The performance of singing
voice detection is measured by frame-level precision, recall
and overall accuracy. Specifically, the precision is the per-
centage of correctly detected vocal frames over all the de-
tected vocal frames; the recall is the percentage of correctly
detected vocal frames over all the vocal frames. The overall
accuracy is the percentage of all the frames (both vocal and
nonvocal) that are correctly classified.

3) Experimental Results: As shown in Fig. 2 (a), by using
the HMM-based classification method, vocal and nonvocal
portions in the song mixtures can be accurately partitioned.
Especially, the precision of singing voice detection is very
high for all three SNRs.

3.2. Evaluation for Singing Pitch Detection

1) Dataset Description: All 1000 song clips of MIR-1K are
used to evaluate the performance of singing pitch detection.

2) Performance Measure: The performance of singing
pitch detection is measured by the overall accuracy, which is
defined as the percentage of the frames satisfying the follow-
ing criteria: (a) if the frame is a nonvocal frame, it is classified
as nonvocal; (b) if the frame is a vocal frame, it is classified as
vocal and the absolute difference between the detected pitch
and the ground truth is less than 1 semitone.

3) Experimental Results: Fig. 2 (b) illustrates the perfor-
mance of singing pitch detection. As can be expected, when
the SNR increases, i.e., the energy of singing voice becomes
more prominent, the overall detection accuracy gets higher.

3.3. Evaluation for Singing Voice Separation

1) Dataset Description: All 1000 song clips of MIR-1K are
used to evaluate the performance of singing voice separation.

2) Performance Measure: Given the resynthesized singing
voice v̂ and the reference clean vocal signal v, the signal-to-
distortion ratio (SDR) is calculated using the BSS EVAL
toolbox [16] to measure the separation quality between them.

Next, as done in [4], the normalized SDR (NSDR) is de-
fined in Eq. (6). It is the improvement of SDR between the
original mixture x and the separated singing voice v̂, and used
to measure the separation performance for each mixture.

NSDR(v̂, v, x) = SDR(v̂, v)− SDR(x, v). (6)

Finally, for the overall performance measure, the global
NSDR (GNSDR) is calculated by taking the mean of NSDRs
over all the mixtures of each set, weighted by their length.
Generally, higher values of GNSDR suggest better separation.

3) Experimental Results: Fig. 2 (c) demonstrates the per-
formance of pitch-based vocal separation without and with
the proposed NMF-based segmentation method (denoted as
Pitch and Pitch+Seg respectively). For comparison, the GNS-
DRs provided by two state-of-the-art singing voice separa-
tion methods outside the pitch-based inference framework,
i.e., REPET and RPCA, are also presented. REPET refers to
the repeating pattern extraction technique (REPET) proposed
by Rafii and Pardo [17], which exploits the repeating musi-
cal structure for voice/music separation. RPCA refers to the
robust principal component analysis (RPCA)-based method
devised by Huang et al. [18], which performs singing voice
separation by applying RPCA on the mixture spectrogram.

As shown in the figure, the GNSDR of Pitch+Seg is about
2 dB larger than that of Pitch for all the three SNRs, indicating
the effectiveness of the proposed segmentation method. Com-
pared with REPET and RPCA, Pitch provides smaller or sim-
ilar GNSDRs, while Pitch+Seg outperforms the two methods
significantly.

4. CONCLUSION

In this paper, we present a new pitch-based approach based on
latent time-frequency component analysis for singing voice
separation. This algorithm manages to complete the missing
information caused by the inaccurate detected pitch as well as
the unvoiced sounds in existing pitch-based methods. Quan-
titative evaluation on 1000 song clips demonstrates the effec-
tiveness of the proposed algorithm.
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