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ABSTRACT

In this paper we propose a novel approach to cepstral smoothing

for reducing musical noise fluctuations in binaural speech enhance-

ment. Similar to other methods, our approach computes a prelimi-

nary spectral gain function using the magnitude-squared coherence

function and applies an instantaneous weighting to the gain function

in the cepstral domain. In this contribution, the weighting function

is based on the binaural cepstral correlation coefficient (CCC). We

introduce the CCC and briefly discuss its properties. Similar to the

cepstrum, the CCC emphasizes the spectral envelope and fundamen-

tal frequency information of the target signal, however, in a represen-

tation normalized to a range of [-1,1] and less sensitive to spatially

uncorrelated noise. Thus, it can be easily and effectively used as a

weight in the cepstral domain. The utility of the CCC is confirmed

via experiments with different noise types and several instrumental

measures.

Index Terms— coherence, cepstrum thresholding, smoothing

1. INTRODUCTION

In this paper we propose a modification of the well-known binau-

ral algorithm [1] for noise and reverberation reduction using the

magnitude-squared (MSC) coherence function. This algorithm (de-

noted as “ABB” in the following) has been originally proposed

by Allen, Berkley, and Blauert to suppress reverberation and has

been also used in a number of noise reduction applications [2]. In

a diffuse noise field or in the reverberant tails of a speech signal

the correlation between microphone signals above a certain cut-off

frequency is low and can thus be separated from the highly coherent

direct sound components. Similar methods, with some variations,

were also employed as a postfilter in conjunction with microphone

arrays [3], [4]. While averaging a correlation or coherence measure

over many microphone pairs of a microphone array leads to a high-

quality spectral gain function, the use of this method with only two

microphones has always been less satisfying: In this case, the output

signal is either plagued by smearing of transient sounds due to the

temporal averaging in the estimation of the MSC, or by musical

noise if the smoothing is reduced to a minimum.

A new approach to solving the musical noise problem has been

proposed in [5, 6] and thoroughly analysed in [7]. The temporal

cepstrum smoothing approach has been successfully employed to

remove musical noise in speech enhancement systems and can be

applied to any real-valued gain function. However, it might intro-

duce a slight amount of reverberance. Therefore, in [8] an approach

has been introduced which uses instantaneous cepstrum nulling
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(also related to cepstrum thresholding [9], [10]) to remove rapid

fluctuations in the spectrum without using a temporal smoothing

process. However, this method requires information about the typ-

ical range of fundamental frequencies in terms of estimated prior

probabilities, and these are acquired in a training step [8].

The proposed, fully adaptive approach uses instantaneous cep-

stral smoothing and, unlike the method in [8], does not need training

data. Towards this end, it is shown that the cepstral correlation co-

efficient (CCC) is a useful tool. As the normalization of the CCC

ensures a range of [−1, 1] it is well suited as a weighting (or soft-

thresholding) function in the cepstral domain. In the remainder of

this paper we briefly introduce the standard MSC-based method and

the CCC. We explain the proposed algorithm and present experimen-

tal results in terms of several instrumental measures and the resulting

gain functions.

2. COHERENCE-BASED SPEECH ENHANCEMENT

We assume that the microphone signals y1(k) and y2(k) are com-

posed of a reverberated target signal s(k) and additive noise n1/2(k)

y1/2(k) = s(k) ∗ h1/2(k) + n1/2(k) (1)

where the indices in the subscript indicate the microphone channels.

h1/2(k) denotes the impulse responses between the source and the

microphones. Neglecting cyclic effects, these signals can be written

in the short-time Fourier domain as

Y1/2(m,µ) = S(m,µ)H1/2(m,µ) +N1/2(m,µ) (2)

where m and µ denote the temporal segment (frame) and the fre-

quency bin indices, respectively.

In the next step we compute a preliminary gain function based

on the magnitude-squared coherence (MSC) function [1]

K(m,µ) =
|E {Y1(m,µ)Y

∗

2 (m,µ)} |2

E {|Y1(m,µ)|2}E {|Y2(m,µ)|2}
. (3)

In order to find an estimate K̂(m,µ) the statistical expectations in

(3) are approximated by first-order recursive systems

Yκ(m,µ)Y ∗

λ (m,µ) = αYκ(m− 1, µ)Y ∗

λ (m− 1, µ)

+ (1− α)Yκ(m, q)Y
∗

λ (m, q) (4)

with a smoothing parameter α and κ, λ ∈ {1, 2}. We then apply

the cepstral smoothing procedure described in the next section to

the estimated gain function K̂(m,µ), resulting in a smoothed gain

function Kccc(m,µ). The instantaneously smoothed gain function
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Fig. 1. Binaural noise reduction and dereverberation using the MSC

gain function and independent processing in each frequency bin.

Kccc(m,µ) and the two input signals are then used to compute bin-

aural output signals. As shown in Fig. 1, we combine the phase-

aligned microphone signals in each channel [1]

Ŝ1(m,µ) = K̂(m,µ)(Y1(m,µ) +A∗(m,µ)Y2(m,µ)), (5)

Ŝ2(m,µ) = K̂(m,µ)(Y2(m,µ) +A(m,µ)Y1(m,µ)), (6)

where the phase-alignment function A(m,µ) is given by

A(m,µ) =
Y2(m,µ)Y

∗

1 (m,µ)

max (|Y1(m,µ)Y2(m,µ)|, ε)
(7)

and ε is a small constant in order to prevent divisions by zero. Then,

the estimated gain function K̂(m,µ) is applied to both channels.

2.1. Temporal Cepstrum Smoothing (CTS)

Smoothing of filter gains in the cepstrum [11] or correlation do-

mains (in either case denoted in what follows by q-domain) was

proposed in [5] and [6]. In these works, the cepstrum smoothing

is implemented in terms of a first-order recursive smoothing sys-

tem which is applied in each q-domain bin. This smoothing pro-

cess leads to a significant reduction of musical noise in the resulting

smoothed gain Kcts(m,µ) while hardly affecting the quality of the

target speech components. However, the temporal smoothing might

leave a slightly reverberant effect in the processed signal which is

less desirable.

2.2. Instantaneous Cepstral Smoothing

The instantaneous cepstrum smoothing multiplies the q-domain rep-

resentation (cepstrum or correlation domain) of the gain function for

each signal segment with a weighting function. Thereby, speech in-

formation is emphasized while noise-dominated bins are attenuated.

In this work we propose to derive this weighting function from the

correlation coefficient of the cepstrum. As shown in Fig. 2, we com-

pute the cepstral correlation coefficient (CCC)

rc(m, q) =
cov{cY1

(m, q), cY2
(m, q)}√

var{cY1
(m, q)}var{cY2

(m, q)}
(8)

of the two input signals in each cepstral bin q. The real cepstra [11]

for the m-th time frame and the q-th cepstral bin are given by (κ ∈
{1, 2})

cYκ(m, q) =
1

N

N−1∑

µ=0

log
(
|Yκ(m,µ)|

2) exp
(
j
2πµq

N

)
. (9)
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Fig. 2. Instantaneous smoothing using the cepstral correlation co-

efficient (CCC). Computations in the q-domain are executed inde-

pendently for each component. Bold arrows signify vectors with

elements for µ = 0, . . . , N − 1.

After the subtraction of the means, the second-order moments are

estimated via first-order recursive systems with parameter αcc and

κ, λ ∈ {1, 2}

cYκYλ(m, q) = αcccYκYλ(m− 1, q)

+ (1− αcc)cYκ(m, q)cYλ(m, q) . (10)

The CCC rc(m, q) may then be approximated by

r̂c(m, q) =
cY1Y2

(m, q)√
cY1Y1

(m, q)cY2Y2
(m, q)

. (11)

The instantaneous smoothing step transforms the preliminary gain

function K̂(m,µ) in the correlation domain

cK(m, q) =
1

N

N−1∑

µ=0

K̂(m,µ) exp

(
j
2πµq

N

)
. (12)

Here, the log-compression of the cepstrum is not necessary [6] as the

gain function is restricted to the dynamic of range [0, 1]. A multipli-

cation of the transformed preliminary gain cK(m, q) with the CCC

weighting function r̂c(m, q), i.e., cKS(m, q) = cK(m, q)r̂c(m, q),
a subsequent Fourier transform, and a limitation to non-negative val-

ues yields the final, smoothed gain

Kccc(m,µ) = max

(
N−1∑

q=0

cKS(m, q) exp

(
−j

2πµq

N

)
, 0

)

.

(13)

Figure 3 shows examples of the gain function before and after

applying the smoothing operation. Clearly, during speech pause,

undesirable fluctuations are suppressed. Interestingly, also the gain

at low frequencies, which is due to the high coherence of the dif-

fuse noise field is reduced. During speech activity, the envelope is

well preserved while the dynamic range of the harmonics is only

slightly reduced. In Fig. 4 we compare the gain functions K(m,µ),
Kcts(m,µ), and Kccc(m,µ) for a longer speech sample. Obvi-

ously, the instantaneous smoothing preserves the time-frequency

structure of the speech signal well while it reduces the spurious

fluctuations of gain K(m,µ) during speech pause.

3. PROPERTIES OF THE CCC

As discussed in [7], the covariance of two cepstral coefficients de-

rived from the same signal is obtained via a 2D Fourier transform

112



0 2000 4000 6000 8000
0

0.5

1

 

 

0 2000 4000 6000 8000
0

0.5

1

g
ai

n
g
ai

n

f / Hz

f / Hz

K(m,µ)
Kccc(m,µ)

Fig. 3. Gain functions K(m,µ) and Kccc(m,µ) for a typical signal

segment during speech pause (top) and during voiced speech activity

(bottom).

of the covariance of the corresponding log-periodograms. Similarly,

we obtain for the covariance of two different cepstra

cov {cY1
(m, q), cY2

(m, q)} =
1

N2

N−1∑

µ1=0

N−1∑

µ2=0

e
j2πq
N

(µ1−µ2)

× cov
{
log
(
|Y1(m,µ1)|

2) , log
(
|Y2(m,µ2)|

2)}
(14)

and the same Fourier-transform dependency holds also for the cross-

correlation E {cY1
(m, q)cY2

(m, q)}.

3.1. Uncorrelated Input Signals

To investigate the CCC during speech pause we consider two un-

correlated zero-mean noise signals y1(k) and y2(k) and their spec-

tral correlation ρ(m,µ) = E {Y1(m,µ)Y2(m,µ)}. Since ρ(m,µ)
is zero, the covariance of the log-periodograms and of the cepstral

coefficients is zero as well [7]. The cross-correlation of the log-

periodograms equals the product of their means

E
{
log(|Y1(m, q)|

2) log(|Y2(m, q)|
2)
}

(15)

= E
{
log(|Y1(m, q)|

2)
}
E
{
log(|Y2(m, q)|

2)
}
. (16)

When the periodograms |Y1/2(m,µ)|
2 obey a bivariateχ2-distribution

with 2L degrees of freedom, we have [7]

E
{
log
(
|Y1/2(m,µ)|

2)}
(17)

= ψ(L)− log(L) + log(E
{
|Y1/2(m,µ)|

2}) , (18)

and the means of the cepstra are given by

E
{
cY

1/2
(m, q)

}
=

1

N

N−1∑

µ=0

log
(
σ2
Y
1/2

(m,µ)
)
e

j2πq
N

µ − ǫq,

(19)

where σ2
Y
1/2

(m,µ) = E
{
|Y1/2(m,µ)|

2
}

and

ǫq =

{
log(L)− ψ(L) q = 0

0 otherwise .
(20)
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Fig. 4. Spectrograms of reverberant and noisy speech (babble noise)

and gain functions K(m,µ), Kcts(m,µ), and Kccc(m,µ). The

sampling rate is fs = 16 kHz, the frame shift is 5 ms, and the DFT

length N = 512.

ψ(L) is the psi-function [12, (8.360)]. For speech signals we typ-

ically have 0 < L < 1 while for a Gaussian signal L = 1 holds.

Hence, for two uncorrelated and spectrally white input signals, the

cepstral correlation evaluates to

E {cY1
(m, q)cY2

(m, q)} = (21)
{
E
{
log
(
|Y1(m,µ1)|

2
)}

E
{
log
(
|Y2(m,µ2)|

2
)}

q = 0

0 q 6= 0
.

The cepstral correlation coefficient in (8) will then have a value close

to one for q = 0 and smaller magnitudes for q 6= 0.

3.2. Harmonic Input Signals

For vowels, the covariance of the dual-channel cepstra shows distinct

peaks at the fundamental frequency F0 = µ0fs/N and its rahmon-

ics (the term rahmonics is introduced in [11]). The quefrency q0 of

the fundamental frequency and its multiples ℓq0 are easily derived

from (14) with µ0q0 = ℓN for ℓ = 1, 2, 3, . . .. Expanding by fs/N
results in q0 = fs/F0 for ℓ = 1. Thus, similar to the envelope

information, the harmonics which both signals have in common are

mapped into a few quefrency bins and show up in the cross-channel

correlation. The normalization in the denominator of (11) then limits

the range to −1 ≤ rc(m, q) ≤ 1. Finally, due to the instantaneous

cepstrum smoothing we may use less smoothing in (4). As a conse-

quence transient speech sounds are less distorted.
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3.3. Algorithmic Refinements

Bias Correction: Reduced temporal smoothing of the preliminary

MSC estimate K̂ causes a larger bias of the resulting MSC. For a

moving average ofM independent segments, the expected estimated

coherence E{K̂} as a function of the true coherence K is [13]

E{K̂} = K +
1

M
(1−K)2

(
1 +

2K

M

)
. (22)

For the recursive smoothing in (4) the effective M is a function of

α, the spectral analysis window, and the frame shift [14] but can

in general be used to balance noise reduction and speech distortion.

Although (22) requires the use of an expected value E{K̂} the ap-

proximation K̂ ≈ E{K̂} is also effective. Then, (22) can be solved

for the true K via a fixed-point iteration with 2-5 steps [15].

Estimation of the Mean Cepstrum: The computation of the CCC

requires the subtraction of the mean. However, the estimation of the

mean is not very accurate during speech activity. Therefore we es-

timate the mean only during speech pauses and use the MSC as an

indicator of these. As a result we achieve strong interference reduc-

tion during speech pauses but also some disturbing discontinuities

between speech pause and speech activity. Therefore we chose to

subtract the mean only for cepstral bins above a cutoff quefrency.

Thresholding the Cepstral Correlation Coefficient: In general,

positive CCC values indicate a synchronous temporal evolution of

the two microphone signals and are thus related to the activity of the

desired signal. By the same token, CCC values near -1 are not useful

for our purposes and should be suppressed. We therefore limit the

CCC to values larger than -0.2 and then take the absolute value to

smooth out its trajectory.

4. EXPERIMENTAL RESULTS

The performance of proposed algorithm (ABB-CCC) has been

comprehensively evaluated and compared to two dual-channel and

binaural noise reduction and dereverberation algorithms: the al-

gorithm in [1] (ABB) and the ABB algorithm with a temporal

cepstrum smoothing post-processing step (ABB-CTS) [5], [6]. The

same spectral, low-delay (10 ms) analysis-synthesis framework [17]

has been used for all algorithms. The smoothing parameters have

been set to α = 0.9 and αcc = 0.92. The speech signal is a

60 seconds concatenation of female and male speech taken from

TIMIT database [18]. The convolution of clean speech signal with

the measured binaural impulse response in lecture room (T60 = 210
ms) and meeting room (T60 = 700 ms) from Aachen room impulse

response data base [19] are contaminated with different noise types

at different levels of SNR. The additive observation noise signals

considered in this work are: spherically isotropic and diffuse babble

noise which has been generated using the algorithm proposed in

[20]. We computed four different performance measures: the seg-

mental SNR improvement (∆SegSNR), the noise attenuation (NA),

the cepstral distance computed on the clean speech signal (CD(s))

[21], and the STOI intelligibility measure [16]. The evaluation re-

sults in Fig. 5 show that the ABB-CCC method provides a segmental

SNR improvement of up to 2.5 dB while it surpasses the reference

methods by almost 1 dB. The highest gains are achieved for input

SNR values around 0 dB. The noise attenuation and the cepstral

distance measures show that there is a significant improvement in

the noise reduction while the distortion of the speech signal does is

not increased. This is also evident from the STOI measure.
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Fig. 5. Experimental results for two rooms and five signal-to-noise

ratios {-10, -5, 0, 5, 10}, averaged over two noise types in terms of

segmental SNR improvement, noise attenuation, cepstral distance of

target speech, and STOI [16]. The smoothing parameters have been

set to α = 0.9 and αcc = 0.92. M in (22) was set to M = 12.

5. CONCLUSIONS

This paper introduces the cepstral correlation coefficient (CCC) and

explores its use in the context of binaural noise and reverberation re-

duction. It is shown, that the CCC can be used as a weighting (soft-

thresholding) function for cepstral smoothing. This novel smooth-

ing results in a very natural residual noise, and, in contrast to using

just the magnitude-squared coherence function to less low-frequency

residual noise and musical tones. The CCC is computed online and

does not require a training step or the estimation of the fundamental

frequency. The experimental results indicate a significant increase in

noise reduction with no additional distortions of speech components.

The theoretical analysis of the properties of the CCC supports these

findings. The CCC weighting emphasizes the salient characteristics

of the target speech signal while it smoothes random fluctuations.
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