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ABSTRACT

In this paper, we propose a simultaneous optimization technique for
speech dereverberation, acoustic echo reduction, and noise reduc-
tion, which can be utilized even when an analog-to-digital (A/D)
converter and a digital-to-analog (D/A) converter are not synchro-
nized. The proposed method utilizes a state-space model in which
acoustic echo reduction filters are regarded as a time-varying state-
vector due to asynchrony of the A/D converter and the D/A con-
verter. In addition to the state-space model for acoustic echo reduc-
tion filters, the proposed method utilizes an additional state-space
model in which noiseless multichannel speech signals are regarded
as a state vector. By using the second state-space model, we can
update the dereverberation filter under noisy environments. To opti-
mize two types of state space models, the proposed method utilizes
the variational Bayes framework. Two Kalman smoother based pa-
rameter optimization stages are performed alternatively. The pro-
posed method is evaluated by using recorded data in a real telecon-
ferencing room. The experimental results show that the proposed
method can reduce acoustic echo signal, speech reverberation, and
background noise more effectively than the conventional method by
authors even when the A/D converter and the D/A converter are
asynchronous.

Index Terms— Kalman smoother, dereverberation, echo reduc-
tion, variational Bayes, asynchronous

1. INTRODUCTION

Noise reduction, dereverberation, and acoustic echo cancellation are
highly required for teleconferencing systems. To reduce reverbera-
tion, autoregressive model based dereverberation techniques [1][2]
have been actively studied. To reduce background noise, single
channel noise reduction techniques [3][4] and multichannel beam-
former [5] have been studied. For acoustic echo cancellation, least
square algorithms based on adaptive filters [7] have been commonly
utilized. However, these functions focus on reduction of specific
type of unwanted signals. When several unwanted signals are re-
quired to be reduced, cascade methods of several methods have been
utilized. However, cascade methods suffer from mutual interfer-
ence problems between the methods, which causes degradation of
eventual speech enhancement performance. A joint optimization of
non-linear echo reduction and non-linear late reverberation reduc-
tion is proposed [6]. However, linear filtering for dereverberation
is not integrated. In the previously proposed method by the authors
[8], we proposed a simultaneous optimization technique of acoustic
echo cancellation, dereverberation, and noise reduction, in which
the probability density function (PDF) of the acoustic echo path is
assumed to be a time-invariant Gaussian distribution. The proposed

method can reduce undesired signals effectively when an analog-to-
digital (A/D) converter and a digital-to-analog (D/A) converter are
synchronized. However, when the A/D converter and the D/A con-
verter are unsynchronized, speech enhancement performance will
be degraded. In this context, the authors proposed a multichannel
acoustic echo reduction technique which tracks the sampling mis-
match between the A/D converter and the D/A converter by using
a state space model of the acoustic echo path [9]. In addition to
the acoustic echo reduction, multichannel Wiener filtering is in-
tegrated in this method, and optimization of parameters are done
simultaneously so as to increase the likelihood function by using
the Kalman smoother based parameter optimization technique [10].
This method is shown to reduce acoustic echo and background noise
effectively. However, speech dereverberation is not integrated into
this method. On the other hand, authors also proposed a noise robust
speech dereverberation technique which utilizes an autoregressive
model of noiseless microphone input signals [11]. However, this
method cannot reduce acoustic echo signal.

In this paper, we propose a simultaneous optimization technique
which can reduce speech reverberation, acoustic echo signal, and
background noise signal even when the A/D converter and the D/A
converter are not synchronized. The proposed method can be inter-
preted as combination of the state-space model based acoustic echo
reduction technique [9] and the state-space model based dereverber-
ation technique [11]. The proposed method is not a cascade method
which utilizes individual cost function for each function, but also
one of simultaneous optimization techniques in which a unified like-
lihood function is utilized. The proposed method utilizes two types
of state-space models. The first one is a state-space model for acous-
tic echo path. This model is close to the previous proposed Kalman
smoother based acoustic echo reduction [9]. However, the previous
model assumes instantaneous mixture for near-end speech sources.
The proposed method utilizes a convolutive mixture model for near-
end speech sources. The second state-space model is a state-space
model for convolutive near-end speech sources. We utilize a noise-
less autoregressive model for reverberant speech sources. To op-
timize these two state-space models, we utilize a variational-bayes
state-space model framework. Experimental results show that the
proposed method can reduce acoustic echo, reverberation, and back-
ground noise signal effectively even when the A/D converter and the
D/A converter are unsynchronized.

2. PROBLEM STATEMENT

2.1. Input signal model

In this paper, we defines the speech enhancement problem at the
time-frequency comain. The microphone input signal with multi-
ple microphones, xl,k (l is frame index, k is frequency index), is
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modeled as xl,k = [ xl,k,1 . . . xl,k,Nm ]T , where Nm is the
number of the microphones and T is the transpose operator of a ma-
trix/vector. Under the assumption that there are one speech source,
far-end acoustic echo signal, and background noise signal, the mi-
crophone input signal is modeled as follows:

xl,k = Gl,kdl,k + cl,k +wl,k, (1)

wherewl,k is the multichannel noise signal. In the proposed method,
each frequency bin is processed independently. Therefore, the fre-
quency index k is omitted. The state-space model for the acoustic
echo path can be modeled as follows:

gl = gl−1 + rl, (2)

where rl is amount of change of the acoustic echo path. The far-end
speech signal dl is defined as dl = [ dl . . . dl−Ld+1 ]T . cl is
a noiseless reverberant speech signal, which is defined as follows:

cl =

Limp−1X
t=0

htsl−t, (3)

where Limp is the length of the impulse response, ht is a vector which
is composed of multichannel impulse responses which is defined as
ht = [ h1,t . . . hNm,t ]T , where hk,m,t is the tth tap of the
impulse response between the speech source and the mth micro-
phone, and sl,k is the original signal.

The noiseless reverberant speech signal cl can be converted into
an auto-regressive model as follows:

cl =

Lw−1X

l′=D

Wl′cl−l′ + el, (4)

where Lw is the length of the autoregressive coefficients, D is the
tap-length of the early reflection, and el is the multichannel signal
which is composed of direct-path and early reflection of the near-end
speech signal. el is defined as el =

PD−1
l′=0 sl−l′hl′ . Furthermore,

the noiseless reverberant speech signal el can be transformed into a
1st order Markov model as follows:

fl = Afl−1 + ul, (5)

where fl = [ cH
l cH

l−1 cH
l−Lw+2 ]H , H is a Hermite transpose

of a matrix/vector, ul = [ eT
l 0 0 ]T ,

A =

2
666664

0Nm×Nm(D−1) WD . . . WLw−1

INm×Nm 0 0 0
0Nm×Nm INm×Nm 0 0
0Nm×Nm 0Nm×Nm INm×Nm 0

...

3
777775

.

(6)
In the standard state-space model, the state vectors converted into
one state vector [ gT

l fT
l ]T . However, it is infeasible because

the computational cost of the Kalman smoother is proportional to
square of the number of the state vector. Therefore, the state-space
models are summarized as follows:
State-transition equations

gl = gl−1 + rl, (7)
fl = Afl−1 + ul. (8)

The observation equation is defined as follows:

xl = Dlgl + Jfl +wl, (9)

where J =

»
INm×Nm 0

0 0

–
.

Dl =

"
dlINm×Nm dl−1INm×Nm . . .

dl−Ld+1INm×Nm

#
, (10)

where I is an identity matrix.
The output signal after dereverberation, acoustic echo reduction,

and background noise reduction is a part of the MMSE estimate of
the second state transition equation:êMMSE,l = E[el|X ,D], where
X = {x1, . . . ,xLT }, D = {d1, . . . ,dLT }, and LT is the number
of the frames.

3. PROPOSED METHOD

3.1. Probabilistic models

In the proposed method, we utilize a local Gaussian model [12] in
which the probability density function (PDF) of the near-end speech
source is set to the time-varying Gaussian distribution as p(el) =
N (0, vlRe), where vl is the time-varying variance of the speech
source signal and Re is the covariance matrix of the steering vector
of the near-end speech source. The state-transition noise rl is de-
fined as stationary Gaussian distribution as N (0, σrI). The PDF of
the observation noise is p(wl) = N (0,Rw).

3.2. Summary of proposed method

In the proposed method, parameters with related to the proposed
state space model are estimated so as to maximize the likelihood
function. However, EM (Expectation-Maximization) algorithm for
the standard state-space model [10] cannot be utilized for the state-
space model with two state transition equations. Instead of the EM
based optimization method, we utilize a variational bayes approx-
imiation. The Q function can be obtained as follows:

Q(„|„(t)) =

Z

G,F
q(G|„(t))q(F|„(t)) log

p(X ,G,F|„)
q(G|„(t))q(F|„(t))

dGdF ,

(11)
where „ is the parameter, which includes {vl}1≤l≤LT ,Re,Rw, σr ,
{Wl′}D≤l′≤Lw−1, G is {gl}1≤l≤LT , and F is {fl}1≤l≤LT . „(t)

is estimation of the parameter after the tth iteration. In the varia-
tional Bayes framework, the joint probability of G and F , p(G,F)

is approximated as q(G|„(t))q(F|„(t)).

3.3. E step

In the E step, approximated probability density functions q(G|„(t)),
q(F|„(t)) are optimized so as to increase the Q function alternately.

3.3.1. Update of q(G)

q(G) are updated under the assumption that q(F) is fixed as follows:

log q(G) = const. + log p(G)− 1

2

LTX

l=1

tr
n
R−1

w (xl − Jf̃l −Dlgl)(xl − Jf̃l −Dlgl)
H
o

,

(12)
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where H is the Hermite transpose of a matrix/vector and f̃l is es-
timated mean vector in q(F). The PDF of G can be regarded as a
multichannel Gaussian distribution with a state-space model as fol-
lows:
State transition equation

gl = gl−1 + rl, (13)

Modified observation equation

xl − Jf̃l = Dlgl +wl, (14)

where xl −Jf̃l is a virtual observed signal. Therefore, q(G) can be
calculated by performing the Kalman smoother [13].

3.3.2. Update of q(F)

q(F) are updated under the assumption that q(G) is fixed as follows:

log q(F) = const. + log p(F) +−1

2

LTX

l=1

× tr
n
R−1

w (xl −Dlg̃l − Jfl)(xl −Dlg̃l − Jfl)
H
o

,

(15)

where g̃l is estimated mean vector in q(G). The PDF of F can be
also regarded as a multichannel Gaussian distribution with a state-
space model as follows:
State transition equation

fl = Afl−1 + ul, (16)

Modified observation equation

xl −Dlg̃l = Jfl +wl, (17)

where xl −Dlg̃l is a virtual observed signal. Therefore, q(F) can
be calculated by performing the Kalman smoother.

3.4. M step

Parameters „ are updated so as to increase the Q function. The time-
varying variance of the near-end speech signal, vl, the covariance
matrix of the steering vector Re, and the auto-regressive coefficient
Wl′ are updated via the sufficient statistics of q(F) in a similar way
with the previously proposed Kalman smoother based dereverbera-
tion technique [11]. σr is updated via the sufficient statistics of q(G)
in a similar way with the acoustic echo reduction technique [9]. Fi-
nally, the covariance matrix of the multichannel observed noise is
estimated as follows:

Rw =
1

LT

LTX

l=1

{xlx
H
l − Jf̃lx

H
l − xlf̃

H
l J

H

− Dlg̃lx
H
l − xlg̃

H
l D

H
l

+ Jf̃lg̃
H
l D

H
l +Dlg̃lf̃

H
l J

H

+ JRf,lJ
H +DlRg,lD

H
l }, (18)

where Rf,l is the covariance matrix of fl which is estimated in the
Kalman smoother and Rg,l is the covariance matrix of gl. The out-
put signal in which reverberation and acoustic echo signal are re-
duced is the first Nm elements of the mean vector of ul that is esti-
mated by f̃l −Af̃l−1.

4. EXPERIMENT

4.1. Experimental conditions

Experimental environment and microphone array alignment are
shown in Fig. 1. The impulse responses were recorded at Location
1, 2, 3 by using TSP (Time Stretched Pulse) method [14]. We eval-

Loc. 2

Loc. 3

2.7 

m

3.4 m

Location 

(Loc.) 1

Microphone 

array

1.8 m
m

Fig. 1. Experimental environment and microphone array alignment

uate the acoustic echo reduction and dereverberation performance
when an A/D converter and a D/A converter are not synchronized.
The far-end speech is played by using the D/A converter attached
with the personal computer. Recording of the microphone input
signal is done by using the A/D converter which is not synchro-
nized with the D/A converter. Therefore, the acoustic echo path is
time-varying. The original source signals of the near-end speech
signals and the far-end speech signals are extracted from the TIMIT
database [15]. The number of the near-end speech signals and
the number of the far-end speech signals are 34 each. The other
experimental conditions are shown in Table. 1.

Table 1. Experimental conditions
Sampling rate 16000 [Hz]
Frame size 1024 [pt]
Frame shift 256 [pt]
Number of microphones Nm 3
Ld 8 [tap]
D 2
Lw 10
Number of EM iterations 10

Signal to Noise ratio (SNR) between the near-end speech and sum-
mation of the recorded far-end speech and the background noise sig-
nal was set to 0 dB. The evaluation measures are Signal To Dis-
tortion Ratio (SDR)[16], Cepstrum Distance (CD) [17], and PESQ
[18]. The proposed method (PROPOSED) was compared with
previously proposed method which combines speech dereverbera-
tion, acoustic echo reduction, and noise reduction by multichannel
Wiener filtering with stationary probability density function of the
acoustic echo path (TOGAMI 2014) [8] and modification of the pro-
posed method with time-invariant assumption of the variance of the
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Fig. 2. Experimental results when SNR is 0 dB

near-end speech source (INVARIANT). The experimental results are
shown in Fig. 2. In each location, the proposed method is shown to
be superior to the conventional methods. Therefore, the proposed
combination of acoustic echo reduction and speech dereverberation
is effective.

5. RELATION TO PRIOR WORK

The proposed method is an extension of the Kalman smoother based
acoustic echo reduction technique [19]. However, this technique is
for only acoustic echo reduction. Additionally, the time-varying as-
sumption of speech sources are not fully-utilized.

6. CONCLUSION

In this paper, we propose a speech enhancement technique for acous-
tic echo reduction, speech dereverberation, and noise reduction. The
proposed method utilizes two types of state-space models. Opti-
mization of the parameters based on two state-space models is per-
formed by using variational Bayes framework. The experimental
results showed that the proposed method is effective.
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