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ABSTRACT

This paper proposes a novel framework that makes it possi-
ble to realize non-negative matrix factorization (NMF)-like
signal decompositions in the time-domain. This new formu-
lation also allows for an extension to multi-resolution signal
decomposition, which was not possible with the conventional
NMF framework.

Index Terms— Audio source separation, non-negative
matrix factorization (NMF), majorization-minimization (MM),
auxiliary function, multi-resolution representation

1. INTRODUCTION

Many sound recordings are mixtures of multiple sound
sources. Audio source separation, i.e., the process by which
individual sound sources are separated from a mixture signal,
has long been a formidable challenge in the field of audio
signal processing.

In recent years, non-negative matrix factorization (NMF)
has attracted a lot of attention after being proposed as a pow-
erful approach for music transcription [1] and audio source
separation [2]. With this approach, the magnitude (or power)
spectrogram of a mixture signal, interpreted as a non-negative
matrix Y, is factorized into the product of two non-negative
matrices H and U. This can be interpreted as approximating
the observed spectra at each time frame as a linear sum of ba-
sis spectra scaled by time-varying amplitudes, and amounts to
decomposing the observed spectrogram into the sum of rank-
1 spectrograms. An important feature of NMF is that its non-
negativity constraint usually induces sparse representations,
i.e., U with a relatively large number of zero entries. This
means that each observed spectrum is parsimoniously repre-
sented using only a few active basis spectra. In such situa-
tions, the sequence of observed spectra can be approximated
reasonably well when each basis spectrum expresses the spec-
trum of an underlying audio event that occurs frequently in the
entire observed range. Thus, with music signals, each basis
spectrum usually becomes the spectrum of a frequently used
pitch in the music piece.

Although the concept of the NMF-based audio source sep-
aration approach has been shown to be successful, one limita-
tion is that it does not take account of phase information: the
additivity of magnitude (or power) spectra is assumed, which
holds only approximately. To overcome this limitation, we
have previously proposed a framework called the “complex
NMF” [3], where the observed complex spectrum at each time
frame is modeled as the sum of components, each of which is
described by the multiplication of a static basis spectrum, a
time-varying amplitude and a time-varying phase spectrum.
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Unlike NMF, this model allows the components to cancel
each other out, and so without any constraints, it does not nat-
urally produce sparse representations. However, it has been
shown that an additional sparsity constraint yields sparse rep-
resentations similar to NMF. With a similar motivation, two
groups (Parry et al. and Févotte et al.) have independently
proposed a generative model of complex-valued coefficients
of the short-time Fourier transform (STFT) of a mixture sig-
nal, where the power spectrogram of each underlying compo-
nent is modeled as a rank-1 matrix (similarly to NMF) and the
phase spectrogram is treated as uniformly distributed latent
variables [4, 5]. They showed that the maximum likelihood
estimation of the power spectral density parameters amounts
to fitting the NMF model to an observed power spectrogram
using the Itakura-Saito (IS) divergence as a goodness-of-fit
criterion. This approach is called IS-NMF.

To the best of our knowledge, complex NMF and IS-
NMF are among the first phase-aware NMF variants to be
proposed. Although both approaches treat each element of
the phase spectrogram as an independent parameter (or latent
variable), the phases of time-frequency components are, in
fact, constrained and dependent on each other. This is be-
cause the spectrograms obtained with typical time-frequency
transforms (such as the STFT and the wavelet transform)
are redundant representations (see Fig. 1 regarding STFT
spectrograms). For example, the STFT spectrogram is com-
puted by concatenating the Fourier transforms of overlapping
short-time frames of the signal. Hence, all the elements of
the STFT spectrogram must satisfy a certain condition to
ensure that the waveforms within the overlapping segment of
consecutive frames are consistent [6]. The shortcomings of
the complex NMF and IS-NMF frameworks are that they fail
to take account of this kind of redundancy. One possible way
to further develop improved variants of these models would
be to incoporate into the models the explicit condition that
spectrograms must satisfy. However, this would make these
models overcomplicated and difficult to optimize.

Instead of using mixing models defined in the time-
frequency domain, this paper proposes introducing a time-
domain model that makes it possible to realize NMF-like
signal decompositions. Moreover, we will show that the
time-domain formulation also allows for an extension to
multi-resolution signal decompositions, that was not possible
with the conventional frameworks.

2. FORMULATION

Let us denote an observed signal at time t,, by y[n], and
the signal of the entire period by y = (y[1],...,y[N))T €

RY. While the NMF approach considers decomposing an ob-
served magnitude spectrogram into the sum of rank-1 spectro-
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Fig. 1. Redundancy of STFT spectrograms.

grams, we consider decomposing the observed time-domain
signal y into the sum of L signal components:

L
y= Zsu
=1

such that the magnitude spectrogram of each component is
as close to a rank-1 structure as possible. Here, let us use
Yipm € CV to denote arbitrary basis functions for time-
frequency analysis, where k and m are the frequency and time
indices, respectively. See Fig. 2 for a graphical illustration.
With STFT, ¢, ,,, is a windowed complex sinusoid. By us-

ing vy, ,,,, the magnitude spectrogram of s; can be written as

ey

\wg’msﬂ. Thus, the problem of interest can be cast as the
optimization problem of minimizing

Z(0) =Y > (Itbp sl — HeaUpm)® + R(U),
1

k,m
subject to Z s =1, 2)
l

with respect to @ = {H,U, S} where H = {Hy,}, U =
{Ui.m} and S = {s;}. Note that Hy,; > 0 and U; ,,, > 0 are
analogous to the basis spectrum and the time-varying ampli-
tude in the NMF model. The first term of the above objective
function becomes 0 when the magnitude spectrograms of all
the members of .S have exactly rank-1 structures. The second
term R(U) is a regularization term for U. It is important to
note that as with complex NMF, this model allows the com-
ponents to cancel each other out, and so some constraint is
needed to induce the sparsity of U. For this purpose, we de-
fine R(U) using the ¢, norm

RU) =27 [Upml, 3)
L,m

where A > 0 weighs the importance of the sparsity cost rel-
ative to the fitting cost. When 0 < p < 2, R(U) promotes
sparsity if the norm of U is bounded. To bound U, we assume

> HY =1 )
k
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Fig. 2. Tllustration of time-frequency basis functions.

3. OPTIMIZATION ALGORITHM
3.1. General principle of auxiliary function approach

Although it is difficult to solve the above optimization prob-
lem analytically, we can develop a computationally efficient
algorithm for finding a locally optimal solution based on the
auxiliary function concept. Here we introduce the general
principle of the auxiliary function approach (also called the
majorization-minimization approach).

Let us use D(6) to denote an objective function that we
want to minimize with respect to 6. G(0, «) is defined as an
auxiliary function for D(0) if it satisfies

D(0) = min G(6, o).

«

(&)

We call « an auxiliary variable. By using G(6, ), D(f) can
be iteratively decreased according to the following theorem:

Theorem 1. D(0) is non-increasing under the updates, 6 —
argming G(0, a) and o +— argmin, G(0, «).

3.2. Designing auxiliary function

When applying the auxiliary function approach to a certain
minimization problem, the first step is to design an auxiliary
function that bounds the objective function from above. The
main difficulty with the present optimization problem lies in

the discontinuity of the gradients of |’l/)1|:7m81| and |Upm, |P.

We can design an auxiliary function for Z(8) by invoking the
following two inequalities.

Lemma 1. For any complex number z and any complex num-
ber c satisfying |c| = 1, we have

—|z] < —Re(c*2). (6)
Equality holds when ¢ = z/|z|.

Lemma 2. When 0 < p < 2, for any real (or complex) num-
ber z, we have

2|z[P < ploP~2|z]? + 2 — plof?. ©)
Equality holds when v = x.
By aplying (6) and (7) to Z(8), we obtain
Z(0) <D Y 198 mst — HitUnmckm|?

I km
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The right-hand side of this inequality can be used as an auxil-
iary function for Z(0). Here, C = {¢; g} and V = {V} ,,,}
are the auxiliary variables. This auxiliary function is min-
imized with respect to C' and V' (equality of the above in-
equality holds) when

Clieym = Wh 81/ |1V s,
‘/l,m = Ul,m~

€))
(10)
It should be noted that (9) indicates the phase spectrogram of
the signal estimate s;, updated at the previous iteration.

As the update rule for the auxiliary variables is given by
(9) and (10), all we need is to derive the update rule for 6.

3.3. Update rules

We can use the method of Lagrange multipliers to derive the
update equations for .S and H. By setting the partial deriva-

tive of the Lagrangian
( Z S — y) )
l

with respect to s; at zero, we obtain 5; = ¥~ '(d; — ~,),
where

H
Z ) 8t — HiaUrmCipm|® + 73
l,k,m

v = ZZRe(wk,mwg,m)? an
k m

di=>_

k

Z Re(Hp, 1UpmClk,m Wk m)- (12)

(12) amounts to performing time-frequency synthesis to ob-
tain the [-th signal component, using the current estimates of
the time-frequency coefficients, Hy, ;U; ¢ k,m. This process
corresponds to the inverse STFT when v, . are defined as
the STFT basis functions. By substituting this result into (1)
and solving Ag, we can write the update equation for s; as:

8 = 'I'_l{dl + ;(\Ily—El:dl)}.

RNXN

13)

It may appear that ¥ € must be inverted to com-
pute (13). However, this can be avoided under the following
setting. First, the time-frequency basis function can be set

so that ) k’m’dlzm becomes a circulant matrix (see Fig.
3). Thus, ¥ can be diagonalized using the discrete Fourier
transform matrix: ¢ = FFUWFFY = FDFH, where
F' denotes the discrete Fourier tranform matrix and D de-
notes a diagonal matrix whose diagonal elements are given as
the sum of the power spectra of ¥ ., ..., Y ,,. It can be
shown (without proof, owing to space limitations), for exam-
ple, that with STFT using the square-root Hanning window,
D becomes an identity matrix, in which case ¥ also becomes
an identity matrix. Thus, (13) can be simplified to

Sy :dl“l‘%(y_zdl)-
1

(14)
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Fig. 3. Graphical illustration of ¥. >~ ¢k7m¢2,m can be set at a
circulant matrix in both cases of STFT and wavelet transform.

By setting the partial derivatives of the auxiliary function
with respect to H}, ; and U, at zeros, the update rules for H
and U are given as

Um0,
S v \wk,n;sn | s
VK Ut 9,512
H H s
Ulm Zk k,l|¢k,m l| (16)

O HE A Vi [P
The iterative algorithm is summarized as follows:
1. Initialize H, U and S.

2. Update C' and V using (9) and (10).
3. Update H, U and S using (14)—(16) and return to 2.

For the initialization (step 1), we can use conventional NMF
algorithms followed by Wiener filtering to obtain the esti-
mates of H, U and S.

3.4. Relation to complex NMF algorithm

It is interesting to compare the update rules of the present al-
gorithm with those of the complex NMF algorithm [3]. The
aim with Complex NMF is to approximate an observed com-
plex spectrogram Y}, ,,, with a model of the form

Fim =Y HemUime® (17)
l

where ¢; 1, denotes the phase spectrogram of the [-th sig-
nal component. Under a certain condition, the complex NMF
algorithm can be described as follows:

1. Initialize H, U and ¢.
2. Update X = { X} jm}and V = {V, ,,,} using
Xijom =Hp Upme? P00 (18)

+ %(Yk,m - Zl/ Hk,l’Ul/,medel/‘k”m)v
‘/l,m :Ul,m- (19)



3. Update H, U and ¢ using

Vb X1 b
Hyy = e UnlXiinl g,
V2 Ui X km)
Hy 1| X k,m
Ui = 2ot et Xtkm|_ 1)
dow Hiy + Ap[Vim [P
edPrkm = X b o /| X1 k- (22)

and return to 2.

Interestingly, there is a similarity between the present and
complex NMF algorithms, even though the models and the
objective functions are different. Specifically, X, and

eI®km of the complex NMF algorithm are analogous to s;
and ¢; ., of the present algorithm, respectively.

Xi,k,m can be viewed as an estimate of the complex
spectrogram of the [-th signal component. In step 2, X ; p,
is updated by adding the portion of the error between the
observed spectrogram and the model to the current esti-
mate of Hklel_,meJ‘z’”“-rm. ¢ is then updated at its argument
arg(Xi k,m), and H and U are updated using its magnitude
| X1, k,m |- Similarly, according to (14), s; is updated by adding
the portion of the error between an observed signal and the
sum of d; to the current estimate of d;, where d; is the signal
converted from the set {Hy, ;U; mClkm }i,m- According to
(9), (15) and (16), ¢;,%,m is then updated at the argument of

wgmsl (the complex spectrogram of s;), and H and U are

updated using the magnitude of 1/;27msl.

One drawback with complex NMF is that X , ., is not
guaranteed to satisfy the explicit condition that complex spec-
trograms must satisfy. This implies that the complex NMF
algorithm is designed to search an unnessarily large solution
space for the optimal parameters. By contrast, the present
algorithm always ensures that the estimate of the complex

spectrogram of the [-th latent component, 1/11':,,,131, is associ-

ated with a time-domain signal s;, keeping the search within
a proper solution space.

4. MULTI-RESOLUTION DECOMPOSITION

Another important advantage of the present model is that it
enables multi-resolution signal decompositions.

The optimal time-frequency resolution may depend on the
kinds of sound sources. For example, temporal resolution
is more important than frequency resolution for percussive
sounds, with the opposite being true for low-pitched sounds.
Thus, it is desirable to be able to arbitrarily set different time-
frequency resolutions for individual sources. Of course, this
was not possible with the NMF framework and its variants
including complex NMF and IS-NMF, since in the conven-
tional frameworks, the decompositions are carried out in the
time-frequency domain with a particular resolution. By con-
trast, the proposed framework allows us to model the time-
frequency structure of each component with a different reso-
lution, thanks to the time-domain formulation.

The multi-resolution extension is straightforward. By ad-
ditionally introducing a “resolution index” r, we obtain an
objective function for the multi-resolution signal decomposi-
tion problem:

7(0) = Z Z(|"/’E,k,msr,l| - Hr,k,lUr,lym)2 +RU),

rl km
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Table 1. SNR improvements (dB) obtained by NMF and TSF.

Track # || NMF | TSF
1 8.53 | 11.03
2 4.96 | 8.20
3] 12.27 | 13.05
4| 1041 | 11.23
51 10.19 | 11.53

subject to >, s,; = y. Here, each r indicates a differ-

ent time-frequency resolution. The above formulation can be
explained as follows. All the signal components are divided
into R groups, each of which consists of L, members, and
s, denotes the [-th signal component within the group r.
Since v, ,,, is indexed by r, the spectrograms of the sig-

nal components in a different group 7’will have a different
time-frequency resolution.

It should be noted that the parameter update rules are de-
rived in the same way as in the previous section.

5. EXPERIMENTS

We quantitatively compared the source separation perfor-
mance of NMF (followed by Wiener filtering) and the pro-
posed method (hereafter, time-domain spectrogram factor-
ization (TSF)) by conducting supervised source separa-
tion experiments. We used professionally produced mu-
sic recordings from the SiSEC 2013 database, available at
https://sisec.wiki.irisa.fr/, as the experimen-
tal data. Each recording is a mixture of multiple tracks, each
of which is produced by a single instrument or singer. The
separated tracks are also available. We divided each recording
into two segments, namely a test data segment and a training
data segment. With all these methods, the basis spectra were
pretrained using the individual tracks of the training data, and
then source separation was performed on the test data. All
the audio samples were monaural and sampled at 22.05kHz.
STFT was computed using a square-root Hanning window
that was 32ms long with a 16ms overlap. With both meth-
ods, 6 basis spectra were assigned to each track. Thus, for
5-track recordings, a total of 30 basis spectra were used for
the separation. Tab. 1 shows the signal-to-noise Ratio (SNR)
improvements after the separations with the two methods.
From these results, we confirmed that TSF performed better
than NMF.

6. CONCLUSIONS

This paper proposed time-domain spectrogram factorization
(TSF), which makes it possible to realize NMF-like signal de-
compositions in the time domain. This new formulation also
allows for an extension to multi-resolution signal separation,
which was not possible with the conventional NMF frame-
work. We confirmed through supervised source separation
experiments that the proposed method outperformed NMF.
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