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ABSTRACT

Nonnegative Matrix Factorization (NMF) is a powerful took fde-

composing mixtures of audio signals in the Time-Frequerdy) (
domain. In applications such as source separation, theepkaev-
ery for each extracted component is a major issue sinceeit ¢éads
to audible artifacts. In this paper, we present a methogofog

evaluating various NMF-based source separation techsiiquelv-

ing phase reconstruction. For each model considered, aarsop

between two approaches (blind separation without pri@mrinftion

and oracle separation with supervised model learning)riepaed,

in order to inquire about the room for improvement for thereat

tion methods. Experimental results show that the High Reisol

NMF (HRNMF) model is particularly promising, because it lHex
to take phases and correlations over time into account wiffteat
expressive power.

Index Terms— Nonnegative matrix factorization, audio source
separation, phase reconstruction, time-frequency asalys

1. INTRODUCTION

The problem of separating polyphonic music mixtures intdated

Several extensions to NMF have been introduced, which in-
clude a phase model [7, 8, 9], but do not refer to phase censigt
Wiener-like filtering is used for instance in [7]. The sepiadacom-
ponents are then derived by inverting a TF representatioosevh
phase is that of the STFT of the mixture. This technique essur
phase consistency as long as only one source is active vatiuh
TF bin. In order to handle the case of overlapping sourcestite
methods [10, 5] minimize the inconsistency of the recomséa
TF representation. On the other hand, some NMF-inspiredetaod
combine phase modeling and spectrogram factorization. cohe
plex NMF model introduced in [8] was later improved by meahs o
consistency constraints [11]. More recently, High ResoluNMF
(HRNMF) has been introduced in [12]. It models a TF mixture as
a sum of autoregressive components in the TF domain, thlingea
explicitly with a phase model which takes time dependenfiies
one TF bin to another into account.

All the above-mentioned models are suitable for blind seurc
separation of audio signals since they factorize the spg@m,
reconstruct the phase and enforce its consistency. In tperp
we propose a methodology for assessing their potential arfdrp
mance. This methodology is based on a comparison between two
approaches: blind separation without prior information anacle
separation with supervised model learning. This comparisper-

sources has become very popular in the last 15 years. Théyfamiformed in order to inquire about the room for improvementtfoe

of techniques based on nonnegative factorizations, ofpefiea to
spectrogram-like representations, has proved to provaleeessful
and promising framework for this task [1].

NMF, originally introduced as a rank-reduction method g;
proximates a nonnegative data matfixas a product of two low-
rank nonnegative matricé® and H. In audio signal processing;
is often chosen as the magnitude or power spectrogram ofghals
whose factorization is interpretable intuitivelyi7 is a dictionary of
spectral templates ard is a temporal activation matrix. Usual alter-
native versions constrain NMF to enforce properties sudpassity
[1], smoothness or harmonicity [3, 4].

However, when it comes to resynthesize the separated tigne si

nals, the recovery of the phase of the corresponding ShoreT
Fourier Transform (STFT) is necessary. Even if common pract
consists in applying Wiener-like filteringe.¢ soft masking of the
complex-valued STFT of the original mixture), phase recpvs

still an open issue, for this kind of filtering does not entophase

estimation methods. Algorithms are evaluated with BS/&LE[14],
a set of objective criteria dedicated to measuring sourparaéon
quality. Finally, the algorithms are tested on differentadgypes.
Since difficulties often arise when sources overlap in theldifain,
a particular emphasis has been put on the related tests.

The paper is organized as follows. Section 2 presents the
sidered NMF-based algorithms. Section 3 describes theadeth
ogy of this benchmark, through objectives and protocol.tiSec
presents results and interpretations of the tests cordlocta vari-
ety of data, and Section 5 draws some concluding remarks.

con

2. NMF-BASED SOURCE SEPARATION ALGORITHMS

2.1. NMF main principle

The NMF problem is expressed as follows: given a matrfiof
dimensionsF x T with nonnegative entries, find a factorization

consistency. That is, the obtained complex-valued matrix is not theV ~ W H whereW and H are nonnegative matrices of dimen-

STFT of a time signal. It is worth noting here that consisgecan
also refer to specific properties of the instantaneous pbleseinu-
soidal component [6], but we will hereafter emplaynsistency in
the first usage only.

This work is partly supported by the French National Rede&gency
(ANR) as a part of the EDISON 3D project (ANR-13-CORD-0008-0
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sionsF' x K andK x T. In order to reduce the dimension of data,
K is chosen such thak'(F + T') <« FT. In audio source sepa-
ration, V' is generally the magnitude or the power spectrogram of a
TF representatioX of a mixture signal (most of the time an STFT).
One can interpretV as a dictionary of spectral templates aHd

as a matrix of temporal activations. ¥, denotes thé-th column

of W and H;, denotes thek-th line of H, thenVi, = W, Hy is
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the magnitude or power spectrogram of the component indeyxed 2.4. High Resolution NMF

kandV = Zle Vi. Note that this result expresses an additiv-

ity property of spectrograms, which only approximatelydsolvhen
sources overlap in the TF domain. This factorization is galheob-
tained by minimizing a cost functio”(V, V). Popular choices for
D are the Euclidean distance, Kullback-Leibler divergeritjeahd
Itakura-Saito divergence [7]. Our benchmark uses muttiive up-
date rules (MUR) [15], in order to estimate a regular NMF vifib
Kullback-Leibler divergence (KLNMF).

2.2. Phase reconstruction

Estimating a complex TF representati&i of a separated source by

applying Wiener filtering [7] consists in computing:

=ty Vey
Zl:l WiH, 14

This method will be referred to &MF-Wiener.

Xk (1)

More recently, the HRNMF model has been introduced in [12]. |
consists in modeling each frequency band of the TF repratent
by means of auto-regressive filtering. This technique adljucap-
tures phase relationships and dependencies over time.

The mixture TF representation is modeled as follows:

K

k=1

wheren(f, t) is a white Gaussian noise. Each souktg f, t) is ob-
tained by autoregressive filtering of a non-stationary align(f, ¢):

P(k,f)
Xp(f,1) =be(fst) + D aplk, )Xu(fit—p)  (5)
p=1

where P(k, f) is the order of the autoregressive filter for soukce

Alternatively, a regular NMF can be combined with a phase re-and frequencyf, of coefficientsa, (k, f). Finally, by (f,t) follows

construction algorithm based on the minimization of a costfion
which penalizes inconsistency. TKiffin-Lim algorithm [10] is
an iterative method described in Eq. (2) for recursivelynesting
the k-th component. For each iteration

Xp— V" = FXD - X = @
k

where F = STFT o STFT L. It has been shown to make the
Euclidean distance betwedn, and |Y;;| decrease over iterations.

This method will be referred to &8MF-GL .

ThelLeRoux algorithm [5] consists in explicitly calculating and

minimizing the inconsistency defined as the Euclidean destdbe-

tweenX andF(X). lterative optimization techniques then lead to

update rules for the phase of the reconstructed source ifRHdo-
main. This method will be referred to 88VF-LR .

In NMF-GL andNMF-LR , the magnitude is constant over it-

erations. The user can force it to be equal’ig obtained from the
NMF. However, experiments show that initializi@iffin-Lim and

LeRoux algorithms with the magnitude oX, in Eq. (1) provides
better results.

2.3. Complex NMF

Complex NMF [11] consists in factorizing a magnitude spagtam
while reconstructing a phase field for each source. The mext
representation is modeled as follows: for each TF(kirt),

K K

X(f,t) = Xp(f,t) =D Wi(f)He(t)e'* 0. (3)

k=1 k=1

This method will be referred to @&8NMF. An explicit phase
consistency constraint [11] leads to a consistent TF reptagon.

It will be referred to asCNMF-LR . The main advantage of this

technique is to jointly estimate the magnitude and phasanper
ters, instead of deriving the phase from an imposed magnifasiin
NMF-LR).
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a centered normal distribution of variantg(f, ¢t) such that, =
Wy Hy, and allb, (f, t) are independent.

The model parameters can be estimated either by a regular
EM algorithm, which is computationally costly, or by a vaidmal
Bayesian EM (VBEM) algorithm, allowing faster computatiwith-
out significant quality loss. We conduct an experience tonege
the best HRNMF initialization and algorithm in Section 4Mote
that recently, HRNMF has been extended to multichannelassgn
and convolutive mixtures, and is now able to model correfetiover
frequency [13].

3. METHODOLOGY

3.1. Objectives

In order to assess audio source separation quality, we uSeEB&_
[14], a set of objective criteria dedicated to this purposem the
original sources;;,; and the estimated sourceg, k = 1, ..., K, BSS
EVAL computes various energy ratios: the SIR (signal to interfee
ratio) that measures the rejection of interferences, thR $#gnal
to artifact ratio) for the rejection of artifacts, and the B[signal to
distortion ratio) for the global quality.

In order to evaluate the room for improvement for these tech-
nigues, we compare the results obtained with a blind appraad an
oracle approach. The blind approach consists in estim#iggod-
els directly from the mixture without using any prior infoation
about the isolated sources. The oracle approach consistslimat-
ing, for each technique, the best performance possiblepadham-
eters are learned from each isolated source. A compariderebe
those two approaches informs us about the opportunitiefuftrer
enhancement of these methods.

Since phase recovery is a major issue in source separdtien, i
interesting to evaluate if the consistency constraint usedrious
methods IMF-GL , NMF-LR andCNMF-LR) is related to audio
quality.

Finally, we want to evaluate the expressive power of the rispde
that is to say their ability to represent a variety of sigradserved
in music analysis. We use both synthetic and real data, with a
without TF overlap.

The MATLAB code for this study is available &t t p: //
perso.tel ecom paristech. fr/ magron/.



3.2. Datasets and protocol

We perform audio source separation on several datasesslyFive
synthesize&0 mixtures of two harmonic signal${ = 2) which con-
sist of damped sinusoids whose amplitude, origin phasquéecy
and damping coefficients are randomly-defined, aé@@B additive
white noise. The damping coefficient is the same for all hauios
One set 030 mixtures does not include TF overlap while the other
one does (see an example in Figure 1).
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Fig. 1. Synthetic data spectrograms: without TF overlap (left) an
with TF overlap (right)

The MAPS (MIDI Aligned Piano Sounds) dataset [16] provides
various data to design mixtures of real piano sounds. Fotetis
on real data, we consid&0 mixtures of two piano notes, selected

4. EXPERIMENTAL RESULTS

4.1. HRNMF initialization and estimation algorithm

HRNMF requires a well-chosen initialization to produce meg-

ful results (likely because of the great number of local miaiof
the cost function). The data to be processed is a mixture af re
notes without frequency overlap. We consider the regulareidd-
rithm [12] and the VBEM algorithm [13]. Initializations cdve ran-
dom, KLNMF [15] or Itakura-Saito NMF (ISNMF, [7]), computed
by means of MUR algorithms.

Table 1. Influence of HRNMF initialization and algorithm on source
separation performance

Algorithm | Initialization | SDR | SIR | SAR | Time (s)
Random 5.3 6.4 14.3 379
EM ISNMF 15.0 | 21.2 | 17.0 376
KLNMF 17.0 | 22.2 | 18.7 377
Random 1.4 2.8 11.1 1.03
VBEM ISNMF 16.9 | 25.3 | 17.7 0.95
KLNMF 169 | 245 | 17.8 0.89

Results are presented in Table 1 (the best performancehs hig
lighted in bold font). We observe that initializing HRNMF thia
prior NMF algorithm provides significantly better resuliaih apply-
ing the EM or VBEM algorithm directly on random parametereeT
choice of the NMF (KL or IS) does not influence much the results

randomly in the MAPS database. We also enforce TF overlap iWWe also see that the VBEM algorithm provides results sintdahe

some data. Finally, we tested the benchmark arb@ second-long
MIDI audio excerpt. It is composed of several occurrencethicde
bass notes and one guitar chofd & 4).

The data is sampled df, = 11025 Hz. It is important to

EM algorithm, with a dramatic reduction of the computatilorast.
We will thus use the VBEM algorithm with KLNMF initializatio

for our benchmark.

note that HRNMF involves more diverse parameters than the re 4.2, Synthetic data

ular NMF model. Indeed, correlations across time are takém i
account by means of autoregressive filtering in each freqyusab-
band of ordetP(k, f). In our experimentsP (k, f) was set tal for

Benchmark results for synthetic harmonics are presenteure 2.
Box-plots compile data for blind approach. Each box-planide

all (k, f). This means that the HRNMF model uses twice as many/P Of a central line indicating the median of the data, uppef a

spectral parameter$}( anda) as regular NMF{V only). In order
to make a fair comparison, it is interesting to compare botides
with the same total number of parameters. The STFT is thusical
lated with a512 sample-long normalized Hann window witts%
overlap for testingCNMF, CNMF-LR andHRNMF models, and
with a 1024 sample-long window for testinlMF-Wiener, NMF-
GL andNMF-LR models.

For both blind and oracle approaches, KLNMF and CNMF are
estimated with 30 iterations of MUR algorithms, and phas®me
struction algorithms involve 50 iterations. HRNMF is ialized
with a 30-iterations KLNMF and estimated with 30 iteratiamighe
VBEM algorithm for the blind approach, and 10 iterations loé t
VBEM algorithm for each source learning (oracle approacihje
compute BSS FAL scores on the different mixtures (for synthetic
and real data) and on 30 different initializations (for Mi@ta).

The numbers of iterations are chosen such that the perf@enan
is not further improved beyond. Energy ratios are expressds.

INote that the total number of parameters involved in the CNivfglel is
higher than the dimension of the TF data itself, becausehab@ coefficients
are free. However, even if comparing CNMF with NMF or HRNMFngs
the same total number of parameters is not possible, thég@siSection 4
will show that CNMF is most often outperformed by the otherdels.
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lower box edges indicating thet and3™¢ quartiles, and whiskers
indicating the minimum and maximum values. The triangles an
stars indicate the performance of the oracle approach.
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Fig. 2. Synthetic harmonics separation performance



These results show th&riffin-Lim andLeRoux phase recon-
struction algorithms provide poor results in terms of augli@lity.
While consistency is increased MMF-GL and NMF-LR, those

methods lead to a decrease of the SDR and SAR scores compared
to NMF-Wiener. Enforcing the magnitude to be constant over iter-

ations seems too constraining to increase audio qua&idMF-LR

is supposed to be a response to the aforementioned problernt, b
does not provide better results thdMF-LR . It also requires much
more memory for storing the phase field of each source. Wenatso
thatCNMF provides better results th&@NMF-LR , confirming that
consistency may not be a good criterion for audio qualitysuRs

generally drop when TF bins overlap, but not in terms of SAR: a

tifact rejection seems globally increased when overlapiecin the
blind benchmark.

Finally, blind separation with thétdRNMF model provides
slightly better results than the other models (except whestlap
occurs in the TF domainCNMF andHRNMF then lead to a sim-
ilar SAR median). This model also provides the best perfoicea
in the oracle benchmartNMF-Wiener is the fastest algorithmi(
ms), the other models are estimated in approximatelyseconds.
Similar computation times are obtained for real data.

The tests performed on synthetic harmonics with vibratoat (t

4.4. MIDI song
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cannot be presented here because of a lack of room) lead to sim

lar results: theHRNMF model significantly outperforms the other
models in the oracle approach, demonstrating its abiligcturately
represent a variety of signals.

4.3. Piano notes mixtures

Benchmark results for piano notes mixtures are presentEdyime
3. We note that the algorithms do not perform worse than irsyine
thetic data case. The blind benchmark shows HRNMF results
are similar to the other algorithms (or slightly better)t the oracle
results confirm that it is the best model available in termzadéntial
for source separationNMF-Wiener is also interesting, because it
provides a fast and relatively accurate audio source sépard he
analysis of the results for each mixture reveals that thditguaf
NMF-Wiener is slightly worse thatHRNMF when there are over-
lapping TF bins.
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Fig. 3. Piano notes mixtures separation performance
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Fig. 4. MIDI audio excerpt separation performance

Figure 4 presents the results obtained with a realistic M
dio excerpt. It shows a dramatic reduction of blind sourgasation
quality compared to the previous tests. This signal seemsdm-
plex to obtain an efficient factorization. ThadRNMF estimation
does not improve the result of the initial KLNMF. Howevere thra-
cle approach still shows that this method has a higher pateéhan
the other models for this applicatioNMF-Wiener is computed in
60 ms and the others models are estimate8itm4 seconds.

5. CONCLUSION

This benchmark presents HRNMF as a very promising model in
terms of source separation quality. It is able to take botasph
and correlations over time into account, and models a yaoiesig-
nals frequently observed in music analysis. In particule,oracle
approach showed that HRNMF is likely to be particularly efit
when source separation is partially informed. The otheretsdnd
algorithms appear to be less appealing for source separhgoause
sources often overlap in the TF domain, a common phenomenon i
music. More generally, algorithms that take correlatioeratime
and frequencies into account with a great expressive poamrld
be considered with particular attention. Consistency hes lzeen
shown not to be an appropriate criterion for audio qualityheT
datasets and procedure described in this work can be a gaisl ba
for further evaluation of the potential of source separatimdels.
Besides, the experiments show that the VBEM algorithm used
for estimating HRNMF is highly sensitive to initializatiorSemi-
supervised learning or prior information about the soursesh as
harmonicity, sparsity or temporal smoothness should bedoted
in order to address this issue. Alternative estimation ogghmore
robust and less sensitive to initialization, could be impdated in
future research. Bayesian methods such as Markov ChaineMont
Carlo (MCMC) and message passing algorithms might be aonmpti
Alternatively, the algebraic principles used in High Resioin meth-
ods (such as the ESPRIT algorithm [17]) could also be e>gaait
order to address this estimation problem.
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