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ABSTRACT

Desirable properties of real-world speech enhancement methods in-

clude online operation, single-channel operation, operation in the

presence of a variety of noise types including non-stationary noise,

and no requirement for isolated training examples of the specific

speaker and noise type at hand. Methods in the literature typically

possess only a subset of these properties. Source separation meth-

ods particularly rarely simultaneously possess the first and last prop-

erties. We extend universal speech model-based speech enhance-

ment to adaptively learn a noise model in an online fashion. We

learn a model from a general corpus of speech in place of speaker-

dependent training examples before deployment. This setup pro-

vides all of these desirable properties, making it easy to deploy in

real-world systems without the need to provide additional training

examples, while explicitly modeling speech. Our experimental re-

sults show that our method achieves the same performance as in the

case in which speaker-dependent training data is available.

Index Terms— online speech enhancement, non-negative ma-

trix factorization, universal speech models

1. INTRODUCTION

Speech enhancement refers to the task of improving the quality

and/or the intelligibility of speech, often to compensate for the

degradation introduced by the presence of a background noise signal

(in this paper, we refer to noise as any interfering source that is not

speech). Applications of this task are numerous and range from

improved intelligibility and fidelity for hearing aids and mobile

phones to front ends for automatic speech recognition. For many

such real-world applications, these methods need to operate online

and in real time.

Speaker and noise independent speech enhancement refers to

performing this task on a mixture of speech from any speaker with

any type of noise without the availability of training data from the

given speaker or noise type. This poses serious challenges due to

the need for additional information about the sources. In [1], we find

that traditional speech enhancement methods can be categorized into

four classes: spectral subtraction [2], Wiener filtering [3], statistical-

based model methods [4] and subspace methods [5]. More recently,

methods inspired by source separation methods and based on non-

negative matrix factorization (NMF) [6, 7] or probabilistic latent

component analysis (PLCA) [8] have been applied successfully to

the task of online speech enhancement. All these methods present

the limitation that they require the estimation of an associated noise

model (e.g., spectrum, subspace), making them noise-dependent,

since their performance relies heavily on the quality of that estima-

tion. Methods such as Wiener filtering or spectral subtraction can

be somewhat more robust than the others to unseen noise when the

noise is stationary, but their performance decreases drastically in the

presence of non-stationary noise. Some existing methods rely on

available spatial information when multiple channels are available

(e.g., in stereo mixtures) [9, 10]. Other methods (e.g., [7]) rely on

a learned model representing the speech structure of the speaker in

order to discriminate speech from noise sources. Those methods are

then speaker-dependent, meaning dependent on the availability of

training data associated with that specific speaker.

In many practical scenarios, we have to deal with the situation

in which only a single-channel mixture is available and we have no

prior knowledge of either the speech or noise. The above-mentioned

methods are no longer applicable in such scenarios, either due to

the absence of information on the sources, or of spatial information.

Additionally, some of them prove to be unsuitable for online imple-

mentation. By making simple assumptions on the structure of the

speech and the noise signals, we can derive methods leading to con-

vincing speech enhancement. A recent method [11] uses the REPET-

SIM method [12] which assumes that the background noise has a

dense and low-ranked (i.e. repetitive) structure while the speech has

a sparse and time-varying structure. This is an offline method, but

its low computational cost allows it to run in real-time on a sliding

buffer advancing on the spectrogram one frame at a time, effectively

making it online.

In [13], an NMF-based method was presented that allows for

speaker and noise independent offline speech enhancement. Though

the method is based on a semi-supervised source separation NMF

method [14], the method does not rely on the availability of speaker-

dependent data to train the speech model. Instead, a collection of

models is learned from a set of independent speakers and concate-

nated in order to form a so-called universal speech model (USM).

The method then iteratively selects the closest speaker(s) matching

the speech signal in the mixture in order to perform speaker inde-

pendent separation. In addition to performing as well on the sepa-

ration task as the case in which speaker-dependent training data is

available, this framework was also successfully applied to the task

of speaker and noise independent voice activity detection [15].

In this paper, we present in Section 2 our method that adapts

the online semi-supervised PLCA-based method presented in [8] to

incorporate the USM framework. This effectively removes the need

to obtain speaker-dependent training data, resulting in a speaker and

noise independent online method. In Section 3, we show the results

of a series of experiments demonstrating that this technique performs

as well as its speaker-dependent counterpart, while outperforming an

existing speaker and noise independent method, as well as traditional

speech enhancement techniques.
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2. ALGORITHMS

2.1. Background

NMF-based source separation methods [14, 16] take advantage of

the non-negative nature of the magnitude spectrogram S of a signal

to approximate it as S ≈WH. In this formulation, the frame st at

time t can be expressed as:

st ≈
∑

k

hk,twk (1)

In many audio processing methods, as in NMF, it is generally

acceptable to approximate the spectrogram as the linear superposi-

tion of the spectral features associated with the audio events present

in the mixture. Following that, we can interpret this equation as

approximating the frame st at time t as the superposition of the

spectral features wk weighted by the activation hk,t, and the whole

magnitude spectrogram S as the matrix multiplication WH with

W = [w1 . . .wK ] and H = [hk,t]. The factorization is obtained

by solving the optimization problem:

minimize
W,H≥0

D(S||WH) (2)

with D the cost function, subject to the constraint that W and H

are non-negative matrices. Here, we use the generalized Kullback-

Leibler (KL) divergence as cost function as it is commonly used in

source separation. It is defined as:

D(S||Ŝ) =
∑

f,t

sf,t log (sf,t/ŝf,t)− sf,t + ŝf,t (3)

where S = [sf,t] and Ŝ = WH = [ŝf,t].
The solution of this optimization problem cannot generally be

found analytically, and in the case where both H and W are un-

known, the problem is non-convex. A local optimum can be found

iteratively by using a majorization-minimization (MM) method [17]

that we refer to as KL-NMF.

The typical pipeline to perform speaker-dependent semi-supervi-

sed NMF-based speech enhancement in the presence of two sources,

say speech and noise, follows the process detailed in [14], where the

method is derived from the equivalent perspective of PLCA:

1. Compute the spectrogram SS from the speech training data.

2. Factorize the spectrogram SS ≈ WSH̃S by minimizing

D(SS ||WSH̃S) using KL-NMF and store the speech model

WS .

3. Compute the spectrogram S of the test mixture signal.

4. Learn concurrently the speech and noise activations HS

and HN as well as the noise model WN from the mix-

ture spectrogram S while keeping WS fixed by minimizing

D(S||WSHS +WNHN ) using KL-NMF.

5. Construct estimated spectrograms for each source

Ŝi = WiHi for i = S,N .

6. Construct a time-frequency masks from the Ŝi and extract the

estimated STFTs of each source through Wiener filtering of

the mixture STFT X:

X̂S =
ŜS

ŜS + ŜN

X X̂N =
ŜN

ŜS + ŜN

X

7. Compute the inverse STFT of X̂i (i = S,N ) to get an esti-

mate of each source.

Algorithm 1 Online Block KL-NMF

inputs st, [s1 . . . sL], Wi, [hi,1 . . .hi,L] for i = S,N
set S =

[
s1 . . . sL st

]

initialize hi,t randomly

set Hi =
[
hi,1 . . .hi,L hi,t

]
and H =

[
HS

HN

]

set W =
[
WS WN

]
(assuming 1TW = 1)

repeat

V← S ./ (WH)

W̃N ←WN . ∗ (VH
T
N )

ht ← ht . ∗ (WT
vt)

for g = 1 : G do

h
(g)
S,t ← h

(g)
S,t ./

(
1 + λ/(ǫ+ ||H

(g)
S ||1)

)

end for

WN ← W̃N ./ (11TW̃N ) (renormalize WN )

until convergence

return WN , hi,t and [hi,1 . . .hi,L] for i = S,N

.∗ and ./ denote component-wise multiplication and division.

This method relies on the availability of isolated training data for

the speaker in the mixture. A similar method can be derived for the

case in which isolated training data is available for the noise part by

swapping the two sources. Since those frameworks are then depen-

dent on either the specific speaker or noise presented in the training

examples, they can have trouble generalizing to unseen speakers and

noise types.

In the USM framework [13], we leverage the fact that we

expect some degree of similarity between groups of speakers al-

lowing the spectral features of one speaker (or a few speakers) to

explain the spectrograms of similar unseen speakers. Then, we

change steps 1. and 2. by learning the speech models W
(g)
S (g =

1 . . . G) of G distinct speakers and store them together as a USM

WS = [W
(1)
S . . .W

(G)
S ]. Under our hypothesis, we would expect

that only a few speaker models (the most similar) need to be active

in order to explain the spectrogram of an unseen speaker. We then

learn the noise model WN and the activations H by solving the

following optimization problem:

minimize
WN ,H≥0

D(S||WH) + λ
G∑

g=1

log(ǫ+ ||H
(g)
S ||1) (4)

The second term is a regularization term given as a function of

the activations H
(g)
S of the different speech models for g = 1 . . . G

(with an additive term ǫ in order to avoid log(0) cases). Its func-

tion is to enforce block sparsity, meaning that it encourages most of

the speech models to have their activations H
(g)
S equal to zero in or-

der to match our intuition that only a few speakers need to be active

to explain the speech signal. The sparsity parameter λ controls the

weight of the sparsity condition. High sparsity parameters encour-

age the selection of fewer models, resulting in better separation, but

sometimes at the cost of higher artifacts. We refer to the method

solving this optimization problem as Block KL-NMF [13].

2.2. Proposed method

In the context of an online method, we want to process the spec-

trogram one frame at a time in order to minimize the delay be-

tween input and output. Following an approach similar to the on-
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line method presented in [8], we gather a buffer of L previously

processed spectrogram frames, for which a noise model and the dif-

ferent activations have been estimated at an earlier iteration. The

idea is then to factorize S = [s1 . . . sL st], concatenation of the L
previously processed frames s1 . . . sL with the current frame st at

time t. With H = [h1 . . .hL ht], we keep fixed the activations

of the buffer frames h1, . . . ,hL and the speech model (the USM

WS = [W
(1)
S . . .W

(G)
S ]), and update only the activations of the

current frame ht and the noise model WN . The optimization prob-

lem we solve for each new frame is then given by:

minimize
WN ,ht≥0

D(S||WH) + λ
G∑

g=1

log(ǫ+ ||H
(g)
S ||1) (5)

Starting from the Block KL-NMF iterative method associ-

ated with USM offline separation [13], we derive the MM iterative

method corresponding to our new optimization problem as presented

in Algorithm 1. We refer to this method as online Block KL-NMF.

The outline of the method to perform the online separation using

the USM is as follows:

• Perform the offline training of the USM (prior to deploy-

ment):

1. Compute the spectrograms S
(g)
S from the speech data

of each speaker g in the training set.

2. Factorize the spectrograms S
(g)
S ≈ W

(g)
S H̃

(g)
S for

each distinct speaker g = 1 . . . G using KL-NMF

and store the learned speech models W
(g)
S as USM

WS = [W
(1)
S . . .W

(G)
S ].

• Once deployed, we perform online speech enhancement. For

each time frame of the mixture signal:

1. Compute the corresponding spectrogram frame st.

2. Factorize S = [s1 . . . sL st] by solving the optimiza-

tion in Equation (5) using online Block KL-NMF.

3. Recover the estimated speech ŝS,t = WShS,t and

noise frame ŝN,t = WNhN,t (from current WN ).

4. Construct spectral masks and extract the estimated

STFT frame of each source through Wiener filtering of

the mixture STFT frame xt:

x̂S,t =
ŝS,t

ŝS,t + ŝN,t

xt x̂N,t =
ŝN,t

ŝS,t + ŝN,t

xt

5. Compute the inverse STFT using the new frame x̂i,t

(i = S,N ) and use overlap-and-add to obtain an new

estimated segment for each source.

6. Update the buffer containing the previously processed

frames (adding the new frame and dropping the oldest

one). Store the noise model WN and the activations of

the buffer frames to process the next frame.

2.3. Initialization

As the USM method is strongly non-convex due to the block spar-

sity condition, we need to ensure that the method is not trapped in

a bad local minimum when filling the first buffer. To do so, we ini-

tialize the method by first storing an entire buffer of signal. We then

perform offline separation on that segment by running 10 MM iter-

ations of Block KL-NMF using the same parameter settings as the

proposed online method. The estimated noise model and activations

are then used as initial values for the next processed frame in the

proposed method.

3. EXPERIMENTS

In this section, we determine optimal parameter settings for our

method and compare its performance with offline NMF-based meth-

ods, the equivalent speaker-dependent NMF-based method, and

several existing methods from speech enhancement literature.

3.1. Data and performance metrics

Our speech data is comprised of data from TIMIT dataset [18].

Our noise dataset is comprised of the following three existing

noise datasets, for a total of 48 noise environments: the NOISEX-

92 database [19], which contains primarily stationary noises, the

dataset used in [8], which contains several examples of highly non-

stationary noises, and the DEMAND database [20], which contains

recordings of real-world environments.

We train a USM (as explained in Section 2) using data from 50

speakers such that each model in the USM is learned from the data

(approximately 30 seconds) of a distinct speaker. A development set

and a test set are built from data corresponding to a different set of

192 speakers (half male/half female), each speaker is mixed with one

of the 48 noise examples to form 192 noisy mixtures with a signal-

to-noise ratio of 0dB (speech and noise at the same energy level).

As a result, each noise type is associated with exactly 4 mixtures (2

male/2 female). The development set consists of the mixtures as-

sociated with a third of the noise examples (16 noises/64 mixtures),

and the test set of the remaining mixtures (32 noises/128 mixtures).

By construction, the training, development, and test sets do not share

any speaker or noise types. The mixtures are 12 seconds long, us-

ing concatenated segments from TIMIT as speech. Our files have a

sampling rate of 16kHz, and the spectrograms are computed using a

Hamming window of length 64ms (1024 samples) with a step size

of 32ms (512 samples) and a zero-padding factor of 2. We run the

online method with a buffer of 60 frames, corresponding to about 2

seconds of signal. Many existing techniques require such an initial

buffer to contain isolated noise. Our method has no such require-

ment. The results are simply suboptimal in this region due to bound-

ary effects. For each speaker, the TIMIT data that was not used to

generate the mixture is used as isolated speaker-dependent training

data for the speaker-dependent NMF-based baselines.

To evaluate the quality of the method, we use 4 standard metrics.

The Signal-to-Noise Ratio (SNR), Segmental SNR (SegSNR) and

Perceptual Evaluation of Speech Quality (PESQ) are three standard

measures of speech enhancement quality. PESQ scores are mapped

to a Mean Opinion Score (MOS) scale between 1 and 5 (higher is

better). We use the implementations of those metrics given in [1].

The Source-to-Distortion Ratio (SDR) corresponds to the overall

score defined in the BSS evaluation metrics [21]. It evaluates the

quality of source separation methods, aggregating the distortions in-

troduced by the interfering source and the audio artifacts generated

by the method. We report here the SDR associated with the speech

track in order to evaluate its quality.

3.2. Parameter Determination

To determine the best set of parameters for our method, we run it

on the development set for the following parameter combinations:

NS = 6, 10, 20, 40; KS = 5, 10, 20, 40; KN = 5, 10, 20, 40;

λ = 8, 16, 32, 64. Additionally, we determine the optimal number

of MM iterations using the procedure described in [22], choosing

the number of iterations that leads to the best average SDR score for

speech in the development set. We run our method for 5, 10, 15, 20
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Online Offline

Universal NS = 20 KS = 10 NS = 40 KS = 20
models KN = 10 λ = 64 KN = 150 λ = 256

MM iter./frame = 20 MM iter. = 20
Speaker KS = 10 KS = 20
dependent KN = 5 KN = 150

MM iter./frame = 5 MM iter. = 10

Table 1. Parameters for the NMF-based methods

MM iterations for each new frame. Although the optimal group spar-

sity parameter λ ideally should depend on the SNR of the mixture,

and the number of noise spectral features KN on the complexity of

the noise structure, we determine a single optimal value over all the

examples in the interest of automating the system.

3.3. Baselines

We compare the proposed method to REPET-SIM [11] as another

method performing speaker and noise independent online speech

enhancement. Based on the assumptions mentioned in Section 1,

this method relies on the building of a similarity matrix between the

frames of the spectrogram to identify similar frames in the spectro-

gram followed by median filtering to average those frames and ob-

tain the underlying repetitive pattern. Those patterns are then used

to reconstruct the background noise signal through time-frequency

masking. The enhanced speech estimate is finally obtained as the

residual between the mixture signal and the noise estimate. The pa-

rameters used for this method are taken from [11]. We use the same

STFT parameters that we used for the proposed method.

We also compare our results to several traditional speech en-

hancement methods, namely multi-band spectral subtraction [2],

Wiener filtering [3], logarithmic Minimum Mean Square Error (log-

MMSE) [4] and the KLT subspace method [5]. We use directly

the implementations provided in [1]. All these methods are online

methods that require adding a segment of signal without speech

at the beginning of each mixture to learn a model for the noise

environment, which is assumed to be quasi-stationary.

Finally, we compare the results of the proposed method with

three other NMF-based methods: speaker and noise independent of-

fline [13], speaker-dependent online [8], and speaker-dependent of-

fline speech enhancement [14]. As for the proposed method, the

noise model is learned from the mixture spectrogram. In the offline

methods, the spectrogram of the entire signal is factorized at once.

For the speaker-dependent methods, the speech model is learned us-

ing isolated training data of the given speaker as opposed to using the

USM. These three methods are expected to perform better than the

proposed method. Our evaluation aims at demonstrating that the de-

crease in speech enhancement performance is minimized compared

to those methods. We perform parameter sweeps on the develop-

ment set for each of these methods to find optimal parametrization

and allow for a fair comparison.

3.4. Experimental results

The parameters used for the optimal result for each NMF-based

method are given in Table 1. The average metrics of the different

methods on the test set are presented in Table 2. We see that with

respect to all metrics, the proposed method performs comparably

to the online method for which speaker-dependent training data

was available. A reason for this could be that while each individual

SDR PESQ SNR SegSNR
Method (dB) (MOS) (dB) (dB)

Offline
Speaker-dependent 10.96 1.72 10.55 4.37

Offline
Universal models 10.9 1.81 10.02 4.1

Online
Speaker-dependent 8.16 1.51 8.08 2.85

Online (Proposed)
Universal models 8.26 1.53 8.19 2.87

REPET-SIM [11] 6.95 1.41 7.29 1.75

Spectral
Subtraction [2] 3.27 1.34 1.59 -1.78

Wiener
filtering [3] 3.87 1.33 3.51 0.75

log-MMSE [4] 5.52 1.46 5.53 1.78

KLT [5] 3.92 1.25 3.35 0.77

Table 2. Average evaluation metrics from the test data results (For

all metrics: higher is better).

speech model of the USM is an imperfect approximation, the combi-

nation of those models can allow for a more flexible model by using

more than one model to approximate an unseen speaker. The perfor-

mance difference between the offline and online methods could be

explained by the availability of a larger amount of information (the

entire spectrogram) to learn the noise structure in the offline case.

Our method also significantly outperforms traditional speech

enhancement methods with respect to all metrics, in part because

the assumption of a stationary noise environment limits the ability

of those methods to handle non-stationary noises. In addition, our

method outperforms REPET-SIM by a small margin with respect to

all metrics as well (+1.3dB SDR, +0.12 MOS PESQ, +0.9dB SNR,

+1.1dB SegSNR). Upon inspection of our data, we observe that our

method could much better approximate highly non-stationary noises

than REPET-SIM, as those noises generally do not exhibit the repet-

itive structure expected by this method. These results emphasize

the advantage of having an explicit modeling of the speech structure

even in the absence of speaker-dependent training data in order to

avoid assumptions on the noise structure.

4. CONCLUSION

In this paper, we presented a speaker and noise independent online

speech enhancement method extending USM-based speech enhance-

ment to the online setting. This framework allowed us to match the

speech patterns of unseen speakers without the need for speaker-

dependent training data. This method was tested on mixtures derived

from standard datasets, and it demonstrated similar performance to

the speaker-dependent implementation of the online method.

Potential variants of this method include the development of

an online voice activity detection method by adapting the offline

method presented in [15]. The addition of temporal modeling in

other NMF-based methods [23, 24] has been shown to improve no-

ticeably source separation quality. Other potential improvements in-

clude the adaptive selection of some of the parameters, such as the

number of noise spectral features KN or the sparsity parameter λ.

Future developments of the presented method could take advantage

of the combination of USMs with such extensions.
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