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ABSTRACT
Traditionally, sensor arrays and spatial filtering aim to enhance in-
dividual sources by suppressing ambient noise and reverberation. In
this paper, the exactly opposite problem is examined, that of sup-
pressing individual sources in favour of the ambient sound and of
the whole acoustic scene in general. We consider a compact circu-
lar sensor array which is embedded in a crowded ambient acoustic
environment and is at the same time prone to interference from direc-
tional speech originating from multiple nearby speakers. We propose
a method for suppressing the undesired components and we compare
its performance with two established approaches in spatial audio
processing, namely, direct-to-diffuse decomposition and Primary-
Ambient Extraction (PAE). Experimental results and a listening test
which are presented illustrate the superiority of our method.

Index Terms— Diffuseness estimation, primary-ambient ex-
traction (PAE), priniciple component analysis (PCA), foreground
suppression

1. INTRODUCTION

Several applications related to audio processing benefit from decom-
posing the information in the audio channels into a directional and a
diffuse component. Estimation of the diffuseness of the sound field
is useful, for example, to manipulate and reproduce spatial sound
[1], to enhance speech by suppressing ambient noise [2] and to ex-
tract and enhance reverberation [3]. In spatial audio, it is becom-
ing a common practice to render point-like directional sources and
ambient sound differently [4, 5, 1]. This allows for flexible parame-
terization of the spatial information, which in turn can be exploited
for reducing data rate and for alleviating compatibility problems be-
tween different reproduction systems.

Commonly, techniques for decomposing the sound field rely on
subspace methods or on the Magnitude Squared Coherence (MSC).
Techniques belonging in the first family are usually exploited in
Primary-Ambient Extraction (PAE) [6, 7, 8]. PAE is used for the
analysis and extraction of the audio content in stereo recordings, usu-
ally with the purpose of delivering it to a playback system which em-
ploys a higher number of reproduction channels. While the mixing
conditions in the stereo channels are generally unknown, the main
assumption in PAE is that the directional (primary) components in
the mix are dominant over the diffuse (ambient) components and
that they are coherent within the audio channels. On the other hand,
MSC can be used for estimating the diffuseness of the sound field
[9, 10, 11] and efficient ways to measure MSC have been suggested
by the authors in [12, 13, 14].
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In this paper, we provide a comparative study among different
methods for decomposing the observed sound field, considering that
the ambient or background sound is the only important information
that needs to be captured and transmitted to the listener. We consider
a compact circular sensor array which is embedded in a crowded
acoustic environment and is at the same time subject to interference
from multiple nearby speakers. This is a typical scenario which may
occur in the capturing and broadcasting of the sound scene in the
case of an athletic event. It would be desired, for example, to create
a panoramic image of the spectators responses during the game with-
out the inevitable masking that the ones in the foreground may cause
to the overall acoustic scene. In what follows, we present the signal
model and we illustrate how simple direct-to-diffuse decomposition
can be exploited for the purposes of this task. We then propose a
novel approach for improving foreground suppression, as opposed to
a classical subspace method which is dictated by treating the prob-
lem as in PAE.

2. SIGNAL MODEL

We distinguish the sound scene into two basic components which
are assumed to be jointly uncorrelated; the foreground scene, which
constitutes of a small number of directional sources (the foreground
sources) at discrete locations in the vicinity of the sensor array, and
the background scene, which includes the ambience sound as well as
the direct path from all the remaining sources which are further away.
The analysis is implemented in the short-time frequency domain. Let
Xm(k, i) be the signal recorded at the mth sensor at time frame i
and discrete frequency k. We can express it as a superposition of
a foreground and a background component, Fm(k, i) and Bm(k, i)
respectively. By omitting the time-frame index i from now on and
by assuming low microphone noise we may write

Xm(k) = Fm(k) +Bm(k), m = 1, ...M, (1)

where M is the number of sensors. We also consider an extension
of the same signal model in the subband domain, which is based on
grouping of the frequency bins into multiple partitions. In particular,
we consider a non-uniform partitioning of J = 20 non-overlapping
subband regions with corners defined by the frequency indexes
{1, b2, ..., bJ , NFFT /2 + 1}, where NFFT is the STFT length.
The partitioning is based on the Equivalent Rectangular Bandwidth
(ERB) and the width of each frequency-subband is approximately
2 ERB [4]. The jth subband region of the mth microphone signal
may be then defined as Xm,j = [Xm(bj), ..., Xm(bj+1 − 1)]T and
letting Fm,j , Bm,j be accordingly constructed, the previous model
may be also written as

Xm,j = Fm,j + Bm,j , m = 1, ...,M. (2)
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3. DIFFUSENESS ESTIMATION

The diffuseness of a sound field can be estimated with practical mi-
crophone setups based on the Magnitude Squared Coherence (MSC)
between two microphone signals Xm(k) and Xn(k) as [15]

Cmn(k) =
|E{Xm(k)Xn(k)∗}|2

E{|Xm(k)|2}E{|Xn(k)|2}
, (3)

where (·)∗ denotes complex conjugation and E{·} denotes the ex-
pectation operator. The minimum of this function is obtained for
purely diffuse sound field (close to 0) and the maximum for only
direct sound (close to 1). However, when using a compact sensor ar-
ray, the correlation of the microphone signals at the low frequencies
is high, leading to values of MSC close to 1, even if the sound field is
purely diffuse. A way for avoiding such a biased estimation has been
proposed by Thiergart et al., who define a diffuseness estimator by
scaling the measured MSC with respect to a theoretical estimation
of diffuse noise coherence [10, 11]. This estimation is nothing else
than the theoretical value of the coherence, which, given a particular
noise model, would be measured with the actual array geometry and
microphone type. For example, assuming spherical isotropic noise
and an array of M omnidirectional sensors, the MxM noise coher-
ence matrix Γ(k) can be modelled as

Γmn(k) =
sin(2πfkdmn/c)

2πfkdmn/c
, (4)

where c is the speed of sound, fk is the frequency in Hertz corre-
sponding to the k-th frequency index and dmn is the distance be-
tween sensors m and n. An estimation of diffuseness Ψ(k) at fre-
quency bin k may then be derived as [11]

Ψ(k) =
1− Cmn(k)

1− Γ2
mn(k)

. (5)

The diffuseness estimator in Eq. 5 represents a linear scaling of the
measured MSC to the range [0,1] such that Ψ(k) = 1 in purely
diffuse fields and Ψ(k) = 0 in non-diffuse fields. To be noticed
that the estimated diffuseness value may exceed the theoretical max-
imum value of 1 when Cmn(k) becomes smaller than the assumed
minimum Γij(k)2. In this paper, values of Ψ(k) greater than one are
treated as 1.

Assuming that the directional and the diffuse component are mu-
tually uncorrelated, the sound pressure Xm(k) at any sensor can be
decomposed into a directional and a diffuse component [11] as

Xdir
m (k) =

√
1−Ψ(k)Xm(k) (6)

Xdif
m (k) =

√
Ψ(k)Xm(k) (7)

where superscripts dir and dif refer to the directional and diffuse
part respectively. The presented signal decomposition approach is
naturally linked to the problem of foreground suppression, since it
is expected that the foreground sound sources will have a dominant
direct path and therefore they will be present in Xdir

m (k), but absent
from Xdif

m (k). The diffuse signal component Xdif
m (k) may thus be

seen as a first solution to the foreground-suppression problem.

4. IMPROVED FOREGROUND SUPPRESSION

Observe that in the last equation, the directional and the diffuse com-
ponent have different amplitudes but equal phases. In practice, this

Fig. 1. Block diagram of the foreground estimation approach based
on WDO in (a) and on PCA in (b). The orthogonalization process is
shown in (c). The estimated background signal at the microphones
may be subject to additional spatial rendering for reproduction with
a multichannel loudspeaker system as shown in (d).

results to Xdif
m (k) being correlated to Xdir

m (k), which in turn re-
sults to the foreground components being still audible in the diffuse
channel. We present in what follows two alternative approaches for
alleviating this problem. The basic concept is to derive an estimation
of the foreground signal by exploiting the diffuse-to-direct decompo-
sition and then to use this estimation in order remove the foreground
components from each microphone signal independently. An im-
portant advantage of this approach is that ideally, it will leave the
phase and amplitude of the background signal at each microphone
unaffected. As a result, any type of spatial filtering technique (e.g.
beamforming) may be used for spatial rendering of the background
acoustic scene (see Fig. 1(d)).

4.1. Spatial analysis

Following the direct-to-diffuse decomposition of the previous sec-
tion, the spatial analysis stage considers a set of fixed filter-sum
superdirective beamformers which filter the directional signals
Xdir
m (k) in order to capture the foreground scene. In each time

frame i, the beamforming process employs L concurrent beamform-
ers whose look directions are uniformly distributed over the azimuth
plane at angles θl = 360(l − 1)/l in degrees. Each beamformer
steers its beam to one fixed direction yielding in total L signals
Yl(k) =

∑M
m=1 w

∗
m(k, θl)X

dir
m (k), l = 1, ..., L in the frequency

domain. While a variety of approaches can be used for optimizing
the beamformer weights wm(k, θl), in this paper we have chosen
beamformers which maximize the array gain under the assumption
of spherically isotropic noise field as [16]

w(k, θl) =
[εI + Γ(k)]−1d(k, θs)

d(k, θs)H [εI + Γ(k)]−1d(k, θs)
, (8)

where ε is a positive scalar used to satisfy the white noise gain con-
strain, the MxM matrix Γ(k) is defined in Eq. (4), w(k, θl) =
[w1(k, θl), ..., wM (k, θl)]

T is the vector with the beamformer
weights and d(k, θl) = [e−j2πfkτ1(θl), ..., e−j2πfkτM (θl)]T is
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the row vector of phase shifts to align the sensor outputs for a signal
from direction θl for the specific array geometry. These beamform-
ers are characterized by unity signal response and zero phase shift
[16].

4.2. Foreground suppression based on the WDO assumption

The beamformer outputs Yl(k) are subject to further processing
which results to separation of the foreground sources according the
their spatial locations. The approach here is based on the assumption
of W-Disjoint Orthogonality (WDO), which is a valid assumption for
signals with a sparse time-frequency representation such as speech
[17, 18]. We basically assume that, at each time-frequency element,
there is only one dominant foreground sound source and that it is
unlikely that two or more foreground speakers will carry significant
energy in the same time-frequency element. Similar as in [19, 20],
the WDO assumption is imposed in the foreground channels Ỹl(k)
through the process

Ỹl(k) =

{
Yl(k), if |Yl(k)| > |Yl′(k)| , ∀l 6= l′;
0, otherwise (9)

Eq. (9) implies that for each frequency element only the correspond-
ing element from one of the beamformer signals is retained, that is,
the one with the highest energy with respect to the other signals at
that frequency bin. As a consequence, the resulting separated fore-
ground channels have disjoint support and are therefore orthogonal
to one another, i.e., Ỹl(k)Ỹl′(k) = 0, if l 6= l′.

The foreground channels are then subject to an enhancement ap-
proach which aims at discarding frequency components whose en-
ergy is lower than a specified threshold. This threshold is based on
an estimation of the background spectral floor, which is in turn de-
fined by using the diffuse part in the microphone signals Xdif

m (k).
Rather than calculating it separately at each frequency bin, the back-
ground spectral floor is averaged over all frequency bins in the same
subband region, forming J spectral floor estimations

pk∈Uj = pj =

√√√√ 1

bj+1 − bj

∑
k∈Uj

|X1(k)|2, j = 1, ..., J. (10)

Due to the small distance between the sensors, we may assume that
the auto spectral densities of the sensors vary trivially from one sen-
sor to the other and the index of the first sensor is here arbitrarily
chosen. The separated foreground channels Ỹl(k) may thus be fur-
ther modified as follows

Ŷl(k) =

{
Ỹl(k), if

∣∣∣Ỹl(k)
∣∣∣ > µpj ,

0, otherwise
(11)

where µ > 0 is a free scaling parameter and j is the index of the sub-
band region containing the kth frequency bin. Following this step,
the resulting time-frequency foreground channels become sparser, in
comparison to the previous stage, and the sparsity is depended on the
value of µ.

Orthogonalization of the microphone signals with respect to the
foreground channels Ŷl(k) is the final step which completes the pro-
cess (see Fig. 1(c)). First, the frequency-domain microphone sig-
nals and foreground channels are partitioned into the J subbands by
grouping of the FFT bins. Due to the orthogonality in the foreground
channels, the process may be accomplished independently for each
channel, avoiding thus the use of matrix inversion. The procedure,

which is repeated for all microphone signals, may be written for the
mth microphone signal as

B̂m,j = Xm,j −
L∑
l=1

Ŷl,jcmjl, (12)

with complex coefficient cmjl resulting from simple orthogonal pro-
jection as

cmjl =
ŶH
l,jXm,j∥∥∥Ŷl,j

∥∥∥2
2

. (13)

The signals B̂m,j are the final output of the process, representing an
estimation of the background components at each subband region
and microphone. Observe that, in contrast to direct-to-diffuse de-
composition, here B̂m,j is orthogonal to the estimated foreground
component F̂m,j =

∑L
l=1 Ŷl,jcmjl. The particular approach is

named W-disjoint Orthogonality based Foreground Suppression
(WDO-FS) and may be schematically represented by subfigures (a)
and (c) in Fig. 1.

4.3. PCA based foreground suppression

In [6], it is proposed to extract the primary component from multi-
channel audio by using Principal Component Analysis (PCA). Use
of PCA relies on the assumption that the primary components are
dominant over the ambient components and furthermore, coherent
within the audio channels. Therefore, these components will emerge
by performing some sort of eigenanalysis and by looking into the
principle eigenvectors. This concept is adopted in our foreground
suppression problem by performing PCA on the output of the spatial
analysis stage as follows.

Consider the beamformer outputs at the jth subband region after
the spatial analysis step stacked in the single matrix

Yj = [Y1,j Y2,j · · ·YL,j ]. (14)

Then the eigenvector Vj corresponding to the largest eigenvalue of
the covariance matrix R = YjY

H
j contains a unit norm version

of the primary component. The microphone signals may then be
orthogonalized with respect to Vj as

B̂m,j = Xm,j −Vjcmj , m = 1, ...,M, (15)

where now cmj = VH
j Xm,j . The signals B̂m,j , m = 1, ..,M

are the final output of the process, representing an estimation of the
background component at each microphone. The complete process
is named PCA based Foreground Suppression (PCA-FS) and may be
schematically represented by subfigures (b) and (c) in Fig. 1.

5. EXPERIMENTAL VALIDATION

Experimental results are presented for recordings produced with a
uniform circular array of four omnidirectional microphones of radius
R = 0.02 m. The recordings constituting the background scene took
place in a large reverberant basketball court, during the graduation
ceremony of the University of Crete. Both the number of spectators
as well as the size of the enclosure were ideal in terms of what can
be defined as an “ambient” sound field. A lot of people were talking,
cheering and applauding simultaneously, while their distance from
the sensors was above 7 meters in most of the cases. Additional mi-
crophone signals were simulated by convolving speech signals with
the acoustic transfer function corresponding to four speakers located
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Fig. 2. Output FBR (red) and BA (blue) as a function of the input
FBR for 2 foreground speakers in (a) and 4 speakers in (b).

at a small distance and at different angles from the array. The ex-
act locations of the individual speakers with respect to the center of
the sensor array were at (-0.34,0.94,0.20), (0.92,0.92,0.23), (0.63,-
1.36,0.30) and (-0.15,-1.69,0.30) m.

We have designed a simple mixing procedure in order to super-
impose the speech signals onto the signals recorded in the basketball
court as follows,

xm(n) = bm(n) + afm(n), (16)
xm = bm + afm, (17)

where bm(n) and fm(n) are the time-domain signals at the mth mi-
crophone for the real and the synthetic recordings respectively, bm
and fm are the corresponding column vectors by aggregating all sam-
ples together and a is a scalar used for varying the balance in the mix.
Our intention is to consider bm and fm as the background and the
foreground component respectively. Although bm may inevitably
contain some directional components, the nature of these recordings
is sufficiently different in order to support our investigation.

In order to quantify the performance of foreground suppression,
we define the Foreground to Background Ratio (FBR) in the time
domain,

FBR = 20 log10(‖af1‖2 / ‖b1‖2), (18)

which can be measured directly at the input stage since both bm
and afm are known. FBR is measured also in the time-domain out-
put signal of each algorithm, using zero lag cross-correlations. In
particular, the FBR is calculated as the ratio of the energy in the out-
put signal which is parallel to f1 to the energy which is parallel to
b1. An additional criterion examined is the Background Attenua-
tion (BA), which expresses the amount of energy subtracted from
the background signal and can be measured at the output signal of
each algorithm in a similar manner.

The conditions for this experiment are as follows; we used the
overlap-add method with an FFT size of 4096 samples, a frame over-
lap of 50% and a sampling frequency of 44.1 kHz. The spatial anal-
ysis stage consisted of L=8 beamformers uniformly distributed at
the azimuth plane and the WDO-FS scaling paremeter µ was set to
1.5. For the computation of the cross-correlations required in Eq. (3)
we used a casual recursive formula with a forgetting factor value of
0.35. At each time frame and frequency, the MSC values were cal-
culated for both opposite microphone pairs and the greatest of these
two values was used for the calculation of the diffuseness.

Results are presented for 15 seconds of audio duration by plot-
ting the variation of output FBR and BA at the output of each method
as a function of the input FBR in Fig. 2. Results are shown for
only two speakers active in (a) and for all four speakers in (b). It

Fig. 3. Perceived quality of the extracted background signal.

can be seen that the suppression performance degrades for all tech-
niques when the number of foreground speakers increases, whereas
BA is more or less the same. In the case of four speakers, WDO-FS
has by far the best suppression performance. Interestingly, the same
method also exhibits the least BA values. As expected, simple use
of the estimated diffuse component has the weakest performance in
terms of suppression among all three techniques. Also, PCA-FS per-
forms better than the latter in terms of suppression, but it produces
high attenuation values, meaning that important information from
the background is lost.

Listening tests were also conducted in order to evaluate the pre-
sented methods. Eleven subjects were asked to judge the sound qual-
ity of the output signal with the four speakers in comparison to a
reference signal for values of input FBR of -6, -3, 0 and 3 dB. The
reference signal, was simply the original signal recorded at the first
microphone plus a weighted version of the foreground signal, so that
the FBR in the reference signal matches the output FBR of each al-
gorithm. This was in order to ensure that the listeners judge the
sound quality of each audio file and not the content. The participants
were given a 5 scale grading system, with 1 being “very annoying”
difference compared to the reference and 5 being “not perceived”
difference from the reference. The mean scores across all subjects
and 95% confidence intervals are shown in Fig. 3. It can be seen that
WDO-FS and PCA-FS have the best and worst scores respectively,
which somehow follows their respective BA values depicted in Fig.
2. To the authors opinion, the rapid variation of the projection co-
efficients at each time frame in Eqs. (12) and (15) acts as a source
of distortion for WDO-FS and PCA-FS, but as the results of the lis-
tening test indicate, at reasonable FBR values, this is not perceived
at an annoying level for WDO-FS (sounds are available online at
http://users.ics.forth.gr/mouchtar/icassp2015/).

6. CONCLUSION

When it comes to capturing and reproduction of crowded acoustic
environments, it would be advantageous to suppress sources in the
foreground in order to improve the end-user’s experience of the over-
all acoustic event. Although not originally intended for this purpose,
diffuseness estimation techniques and PAE may be seen as two ex-
isting approaches for addressing the problem. By slightly modifying
PAE to operate on a compact sensor array, we showed that a bet-
ter suppression performance may be achieved, but this performance
deteriorates significantly as the number of foreground sources in-
creases. On the other hand, the proposed WDO-FS is more robust to
the number of foreground sources and also achieves the best subjec-
tive score in terms of sound quality. This research is motivated by the
emerging demand in satellite or Web-based sports events broadcast-
ing to deliver a surrounding and immersive experience to the home-
user, potentially by giving him the right to select the audiovisual
content of his preference from a given list of options.
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