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ABSTRACT

A method for decomposing audio signals into direct signals and
ambient signals is described that can be applied to sound post-
production and reproduction. The proposed method is based on a
parametric multichannel Wiener filter (MWF) that enables a trade-
off between the attenuation of the interfering signal and the distor-
tion of the desired signal. We show that the MWF leads to distortions
of the spatial cues of the ambient output signal, namely inter-channel
correlation and inter-channel level difference. Our proposed solu-
tion is to control the trade-off parameter of the parametricMWF to
ensure that these spatial distortions are inaudible.

Index Terms— direct-ambient decomposition, parametric
Wiener filter

1. INTRODUCTION

Audio signals can be modeled as mixtures of direct sounds andam-
bient sounds. Direct sounds commonly lead to coherent signals,
whereas ambient sounds (like room reverberation, applauseor bab-
ble noise) lead to signals that are at least partially incoherent. The
separation of direct and ambient signals can be applied to manipulate
the amount of reverberation in an audio recording and for upmixing,
i.e., for creating an output signal given an input signal with fewer
channels. The ambient signals can be used for producing, forex-
ample, surround signals that are fed into the rear loudspeakers of a
surround sound setup. The process of separating direct and ambient
signals can be accomplished using a direct-ambient decomposition
(DAD) method.

Various DAD methods have been proposed using spectral
weighting that are based on i) the inter-channel correlation (ICC)
[1, 2], and ii) estimates of the ambience power [3]. A method for
extracting the uncorrelated signals using an adaptive filter algorithm
for predicting the direct signal component and obtaining the ambi-
ence as the residual signal is described in [4]. For the processing
of multichannel signals, a method based on estimates of the power
spectral density (PSD) of the ambient signal using a two-channel
downmix and Wiener filtering of the input signal [5] and a method
using pairwise correlations [6] have been proposed. Approaches for
the processing of single-channel signals are based on non-negative
matrix factorization [7], spectral weighting using feature extraction
and supervised learning [8], or on the estimation of the magnitude
transfer function of the reverberant system which has generated the
ambient signal [9].

Other approaches compute output signals as linear combinations
of the input channels, e.g. the method proposed by Faller [10] that
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is based on the MWF, and methods using principal component anal-
ysis (PCA) [3, 11, 12]. An extensive comparison of the MWF and
PCA approaches, a generic linear estimation framework, andmeans
for adjusting the performance with respect to various distortion mea-
sures have been recently presented in [13]. In this work, we extend
this idea and propose to achieve such adjustment signal dependently.
To this end, we present a method based on the parametric MWF
(PMWF), show potential distortions of the spatial cues of the out-
put ambient signal introduced by the MWF, and propose a meansfor
limiting these distortions to be below psychoacoustic thresholds.

The paper is organized as follows: in Sec. 2 the problem of DAD
is formulated, Sec. 3 describes the PMWF for DAD, Sec. 4 intro-
duces the control of the PMWF using psychoacoustic parameters, in
Sec. 5 the proposed method is evaluated, and in Sec. 6 the conclu-
sions are given.

2. PROBLEM FORMULATION

The signal model is represented in the time-frequency domain where
m denotes the time index andk denotes the subband index. The
i-th input signal is denoted byYi(m,k) and consists of an additive
mixture of a direct signalDi(m,k) and an ambient signalAi(m, k),
which are both are assumed to be Gaussian random variables with
zero mean. An input signal with 2 channels can then be writtenas1

y = d+ a, (1)

with y = [Y1 Y2]
T , d = [D1 D2]

T , anda = [A1 A2]
T .

The objective of the DAD is to estimated anda, which in the
following are obtained using

d̂ = H
H
Dy, (2)

â = H
H
Ay, (3)

where(·)H denotes the conjugate transpose operation,HD is the
filter matrix to estimated, andHA is the filter matrix to estimatea.
The filter matrices are computed from estimates of the PSD matrices
for y, d anda given byΦy = E{yyH}, Φd = E{ddH}, and
Φa = E{aaH}, whereE{·} is the expectation operator.

As in [10,13], we assume that

1. Di andAj are uncorrelated∀i, j,

2. A1 andA2 are uncorrelated,

3. The ambience power is equal in all channels,

4. D1 andD2 are correlated and time aligned.

1For brevity, the time and subband indices are omitted when possible.
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Consequently, the PSDs of the audio signals and ambient signals can
be expressed as

Φy = Φd +Φa, (4)

Φa = φA I, (5)

whereI is the identity matrix.
We aim at ambient output signals with similar spatial cues asthe

ambient input signals. In particular, we focus on the inter-channel
level difference (ICLD) and ICC of the ambient output signalthat
are respectively given by

aICLD = φÂ1Â1
φ
−1

Â2Â2

, (6)

aICC= φÂ1Â2
(φÂ1Â1

φÂ2Â2
)−1/2

, (7)

whereφÂiÂj
refers to elements of the PSD matrixΦâ = E{ââH}.

To measure the separation performance for the estimated ambient
signals, we define the output direct-to-ambient ratio (DAR)that is
obtained using the filter matrixHA:

aDAR=
tr{HH

AΦdHA}

tr{HH
AΦaHA}

, (8)

where tr{·} is the trace operator.

3. DIRECT AND AMBIENT SIGNAL EXTRACTION

3.1. Estimation of the ambient signals

A minimum mean squared error (MMSE) estimate of the ambient
signals,a, can be obtained by finding a filter matrixHA that mini-
mizes

JA = E

{

∥

∥

∥a−H
H
Ay

∥

∥

∥

2

2

}

= tr
{

E
{

rdr
H
d

}

+ E
{

qaq
H
a

}}

,

(9)
whereqa = [I−HA]

H
a is the distortion of the ambient signals,

andrd = HH
Ad are the residual direct signals. Clearly, the attenua-

tion of the direct signals comes at the expense of distortingthe am-
bient signals. In this work, we like to control the trade-offbetween
the amount of direct signal reduction and ambient signal distortion.
Therefore, we introduce a trade-off parameterβ (β > 0) in (9), i.e.,

JA(β) = tr
{

E
{

rdr
H
d

}

+ β E
{

qaq
H
a

}}

. (10)

By equating the derivative ofJA(β) with respect toHH
A to zero, we

find the PMWF matrix

HA(β) = [Φd + βΦa]
−1

βΦa. (11)

Given the assumption that lead to (4) and (5) it is known from
[3,10] that an estimate ofφA can be obtained using

φ̂A =
1

2

(

tr{Φy} −
√

(φY1Y1
− φY2Y2

)2 + 4Re{φY1Y2
}2
)

.

(12)

The PSD matrix of the input signals,Φy, can be estimated using
recursive averaging

Φy(m) = αΦy(m− 1) + (1− α)y(m)yH(m), (13)

whereα (0 ≤ α < 1) is the forgetting factor that relates to the
integration time.

3.2. Estimation of the direct signals

In a similar way as for the ambient signals, we can obtain an estimate
of the direct signals,d, and provide a trade-off between the reduc-
tion of the ambient signals and the distortion of the direct signals.
Therefore, we define the cost function

JD(β) = tr
{

β E{rar
H
a }+ E{qdq

H
d }

}

, (14)

whereqd = [I−HD]H d is the distortion of the direct signals,
ra = HH

Da are the residual ambient signals, andβ (β > 0) is the
trade-off parameter. The solution is given by

HD(β) = [Φd + βΦa]
−1

Φd . (15)

Using (11) and (15), we can easily verify that

HD(β) +HA(β) = I, (16)

such that̂d+ â = y.
Thei-th column of the filter matrix can be written as

hD,i(β) = [Φd + βΦa]
−1

Φd ui , (17)

whereu1 = [1 0] andu2 = [0 1] and can be used to estimate the
direct signal of thei-th channel. This filter is similar to the PMWF
used for speech enhancement.

Assuming that at most one direct sound source is active per time-
frequency instant, such that the rank ofΦd can be assumed to be one,
we can use the matrix inversion lemma to write (15) as

HD(β) =
Φ−1

a Φd

β + λ
=

Φ−1

a Φy − I

β + λ
, (18)

whereλ is the multichannel direct-to-ambient ratio (DAR)

λ = tr{Φ−1

a Φy} − 2 . (19)

Instead of estimating the ambient signals directly, we can first
estimate the direct signals using (18) and then use (1) to compute
the ambient signals. The main advantage of this procedure isthe
reduced computational load when inverting the diagonal matrix Φa

instead of the full rank matrix[Φd + βΦa].

4. CONTROL OF THE TRADE-OFF PARAMETER

4.1. Rationale

The derived filters (11) and (15) are equivalent to the MWF used in
[10] for β = 1. Figure 1 illustrates the aICLD and aICC as function
of the ICLD of the direct input signal (denoted by iICLD) and of
the DAR of the input signal (denoted by iDAR). It is apparent that
when iDAR is large, the output signals are panned to the opposite
direction of the input signals (upper plot) and have negative ICC of
large magnitude (lower plot), which is in contrast to the ideal case
according to our model assumptions (aICLD = 0 dB, aICC = 0).

Figure 2 illustrates the spatial cues (aICLD and aICC) obtained
for an iDAR of 12 dB as function of iICLD andβ. It is apparent
that increasing the trade-off parameter to e.g.β = 7 improves the
spatial cues such that aICLD approaches 0 dB and aICC approaches
0. Since the ideal case can not be achieved in all cases or comes at
the cost of high residual direct power, our rationale is to control the
trade-off parameter such that the absolute values of both, aICLD and
aICC, are below perceptually motivated thresholds.
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Fig. 1. aICLD (upper plot) and aICC (lower plot) forβ = 1.

4.2. Psychoacoustic thresholds

The proposed psychoacoustic thresholds are based on thejust-
noticeable level variation(JNLV) for the aICLD and thejust-
noticeable difference of interaural correlation(JNDIC) for the
aICC.

Research on the JNLV using amplitude-modulated stimuli in-
dicates that the JNLV largely depends on the stimulus (tone versus
noise, center frequency and bandwidth), absolute level andmodula-
tion frequency. It ranges between 0.2 dB (for a 1-kHz tone at 100 dB
SPL) and slightly below 4 dB (at the threshold of hearing) andis
approximately 0.8 dB for white noise when presented with an SPL
larger than 30 dB [14].

The JNDIC depends on the ICC of the reference condition and is
markedly larger for uncorrelated reference stimuli than for correlated
stimuli. The correlation sensitivity for narrowband stimuli in diffuse
sound field reference conditions depends on the center frequency and
the bandwidth of the stimulus and is smaller for negative than for
positive deviations from the reference condition [15].

Experiments with pink noise whose correlation above 500 Hz
has been varied between -1 and 1 with a step size of 0.2 revealsthat
deviations larger than 0.4 were discriminable [16].

4.3. Implementation

As computing the trade-off parameter such that aICLD and aICC are
below defined limits is computational complex, we propose inthis
paper to determine the trade-off parameter using numericalsimula-
tion. To this end, we increase the trade-off parameterβ until aICLD
and aICC are below the psychoacoustic limitsΛICLD = 1 dB (for
aICLD) andΛICC = 0.2 (for aICC). The obtained value forβ that
fulfills both requirements is stored in a lookup table and referred to
asβopt.

To illustrate the effects of the threshold values onβopt separately,
we computeβICLD by considering onlyΛICLD , and similarly we com-
puteβICC by considering onlyΛICC. Figure 3 showsβopt, βICLD and
βICC for different iICLD as a function of the iDAR and shows that
βopt = max(βICC, βICLD). For very small iICLD, the parameterΛICC

is the deciding factor forβopt. For iICLD = 3 dB, both spatial cues
have a similar effect onβopt, whereas for large iICLDβopt = βICLD .
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Fig. 2. aICLD (upper plot) and aICC (lower plot) for iDAR=12dB
as function ofβ and the iICLD.
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Fig. 3. Trade-off parameters for iICLD = 0 dB, 3 dB, and 20 dB:
βICLD (dashed line),βICC (solid line) andβopt = max(βICC, βICLD)
(open circles).

5. PERFORMANCE EVALUATION

Figure 4 shows aICLD, aICC and aDAR forβ = βopt. It con-
firms that the spatial cues are below the defined thresholds. The
aDAR increases when the iDAR increases, and the DAR improve-
ment (i.e. the difference aDAR-iDAR) is better for large iDAR than
for small iDAR.

Figure 5 illustrates the example of a commercial recording of
4 seconds length with singing, instrumental accompanimentpanned
off-center to both sides, and reverberation. The first 60 subbands are
shown, corresponding to a frequency range of 2584 Hz. The sum
of the auto-PSDs (tr{Φy}), ICC and ICLD ofy are shown in the
upper row of plots. The following rows of plots illustrate tr{Φâ},
the aICC and the aICLD of the output signals obtained using the
MWF, the PMWF withβ = 10 and the proposed method withβopt.

The distortions of the spatial cues can be observed for the MWF.
The attenuation of the singing (the loud direct signal panned to the
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center) results in aICC values close to -1. The time-frequency bins
corresponding to the direct signals that are panned off-center show
aICLD values having opposite signs compared to the ICLD of the in-
put. For the PMWF withβ = 10, the spatial cues are less distorted,
but the attenuation of the direct signal is the lowest and thecorrela-
tion between the ambient output signals is the highest in comparison

to the two other methods.
The proposed method yields a compromise, as expected, where

the distortions of the spatial cues are small and the attenuation of
the direct signal is only slightly worse in comparison to theMWF.
It can also be observed that the distortions of the spatial cues ex-
ceed the thresholdsΛICLD and ΛICC. Experiments with synthetic
signals showed that this phenomenon does not occur when process-
ing stationary signals. We hypothesize that it is caused by the non-
stationarity of the input signals and the resulting errors in the estima-
tion of the input PSD matrix. However, the distortions of thespatial
cues are much smaller for the proposed processing compared to the
two other methods.

Informal listening reveals that the ambient output signalsob-
tained with the proposed method have subjectively a good sound
quality, and that the described trade-off is audible.

6. CONCLUSIONS

We proposed a method for DAD based on the PMWF that enables
a trade-off between the attenuation of the interfering signal and the
distortion of the desired signal. We have shown that the MWF intro-
duces distortions of the spatial cues of the ambient output signals. To
solve this problem, we control the trade-off parameter of the PMWF
such that these distortions are below thresholds of hearingthat we
derive from the JNLV and the JNDIC.
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