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ABSTRACT

Multi-microphone speech enhancement requires knowledge of rela-
tive Time Delay of Arrival (TDOA) of the desired acoustic source at
microphones. This paper presents a novel TDOA estimation method,
Steered Null Error PHAse Transform (SNE-PHAT), which exploits
null-steering to improve estimation robustness. The method is for-
mulated to be computationally efficient. A generalization to provide
frequency-dependent TDOA estimates is proposed. Experimental
results demonstrate that SNE-PHAT outperforms the Generalized
Cross Correlation PHAse Transform (GCC-PHAT) method, particu-
larly in the presence of background noise. Additionally, experiments
illustrate the benefits of using frequency-dependent TDOA estima-
tion.

Index Terms— Sound source tracking, localization, null-
steering, beamforming, microphone array, GCC-PHAT, TDOA.

1. INTRODUCTION

The use of mobile handsets in hands-free mode requires high quality
signals to be transmitted to the far end, even in challenging acous-
tic conditions. Multi-microphone processing has become popular
for noise suppression in mobile phones [1]. Figure 1 shows a sim-
plified block diagram of typical multi-microphone processing for
speech enhancement. Microphone signals xi(n), i = 1 . . .M cap-
ture delayed versions of the desired signal s(n), desired signal re-
flections, noise components, and acoustic echo from the far end.
Captured signals are typically transformed into the subband or fre-
quency domain in order to provide spectral resolution during suc-
ceeding processing [1]. Beamforming can then be applied to ex-
tract an enhanced signal ŝ(n). Examples of beamforming methods
include the generalized-side-lobe canceller [2] with single-channel
post-processing [3]. Note that if the communication system includes
playback of a far-end signal, acoustic echo cancellation (AEC) can
be applied at various points in the processing chain [4].

Beamforming typically uses relative delay between microphone
pairs [5]. A primary microphone is chosen and relative time-delay-
of-arrival (TDOA) values between the primary microphone and sup-
porting microphones, τ1j for j = 2 . . .M , are estimated. The rela-
tive delay values between microphone pairs depend on the angle of
incidence of the desired source, θ, with respect to the microphone
array, which must be estimated on a frame-by-frame basis. In most
systems, the relative delay is estimated as a two-step process. First,
raw frame-specific TDOA values are obtained. These estimates are
then refined by post-processing using for example, particle-filtering,
clustering, mixture-modeling, and Kalman filtering [5, 6, 7, 8].

Accurate estimation of the raw TDOA values is vital for subse-
quent blocks. Many successful time-delay estimation methods exist,

Fig. 1. Block diagram of typical multi-microphone processing for
speech communication.

including adaptive eigenvalue decomposition [9], cross-correlation-
based methods [10], and maximum-likelihood-based methods [11].
Of these, the Generalized Cross Correlation PHAse Transform
(GCC-PHAT) method has proven itself popular due to its computa-
tional efficiency and good performance [1, 5, 6]. The GCC-PHAT
method estimates TDOAs by finding the angle that maximizes the
steered response of a microphone pair over the desired frequency
range. The performance of the GCC-PHAT method, however, de-
grades in the presence of acoustic noise.

This paper presents the Steered Null Error PHAse Transform
(SNE-PHAT), a novel method for TDOA estimation that uses null-
steering to find the desired time-difference. For the case of two mi-
crophone signals, the method determines the delay that maximizes
the prediction gain, when predicting one microphone signal from
the other microphone signal under optimal (frequency-dependent)
gain. Equivalently, SNE-PHAT minimizes the associated prediction
error. In addition, the paper provides a mathematically equivalent,
yet computationally efficient formulation of SNE-PHAT, that is suit-
able for low complexity implementation.

A generalization to provide frequency-dependent TDOA esti-
mates, in order to account for variations in TDOA with respect to
frequency, is developed. The TDOA for a point source, observed
in free far-field conditions, is well-known to be constant for all fre-
quencies. However, real-world acoustic data may exhibit frequency-
dependent TDOA due to various acoustic phenomena, and it may
prove beneficial for subsequent processing blocks to represent this
characteristic. Furthermore, the paper discusses how to address the
ambiguity due to spatial aliasing at higher frequencies.

The paper is organized as follows. Section 2 provides a brief
summary of the classical GCC-PHAT method and introduces no-
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tation. The proposed SNE-PHAT method is presented in detail in
Section 3. Experimental results are provided in Section 4, and con-
clusions are given in Section 5.

2. NOTATIONS AND GCC-PHAT REFERENCE METHOD

The widely-used GCC-PHAT method serves as a reference for
the proposed method. Both methods are treated in the frequency-
domain, and both are implemented using identical windowing and
Fast Fourier Transform (FFT). The time-domain microphone signal
yi(n) for microphone i is represented by Yi(m,ωk), where m de-
notes the frame number, and ωk = 2πk/K, for k = 0, 1, . . . ,K/2,
denote discrete frequency points. In the following, the frame index
m and subscript k for ω have been omitted to simplify notation,
and the microphone signal in the frequency domain is expressed as
Yi(ω).

Consistent with [10], GCC-PHAT estimates the TDOA τij for
microphone pair i and j by maximizing the steered normalized
cross-correlation function according to

τij = argmax

τ∈
[
−

dij
c

,
dij
c

]
∑
ω

E
[
Yi(ω)Y

∗
j (ω)

]
e−jωτ∣∣E [Yi(ω)Y ∗

j (ω)
]∣∣ (1)

where dij is the distance between microphone i and j, c is the speed
of sound in air, ∗ is the conjugate operator and E[.] is the expectation
operator. In practice, the expectation operator is implemented with
a running mean and serves to reduce the variance of the spectrum
estimates.

3. STEERED NULL ERROR PHASE TRANSFORM
(SNE-PHAT) METHOD

The GCC-PHAT method described in Section 2 implicitly deter-
mines the TDOA by looking in different directions and selecting
the direction that maximizes the cross-correlation energy. On the
other hand, the method proposed in this paper scans for time de-
lays between a microphone pair i and j and selects the TDOA that
minimizes a steered null-error, or as conceptually outlined above,
selects the TDOA that maximizes the prediction gain when predict-
ing one microphone signal from the other under optimal (frequency-
dependent) gain. For a particular frequency bin, ω, and candidate
TDOA, τ , the prediction error is

Eij(ω, τ) = Yj(ω)−Gij(ω, τ)e
jωτYi(ω) (2)

where Gij(ω, τ) is the optimal gain. The corresponding time do-
main prediction error is denoted eij(n, τ). Clearly the optimal gain
should not represent any delay (as that is to be captured and repre-
sented by the TDOA, τ ), and hence, when deriving a solution for the
optimal gain, the solution must be constrained to be real and posi-
tive. The core cost function for calculating the optimal real gain is
formulated as
CG(ω, τ) =E

[
Eij(ω, τ)E

∗
ij(ω, τ)

]
=E

[
Yj(ω)Y

∗
j (ω)

]
+G2

ij(ω, τ)E [Yi(ω)Y
∗
i (ω)]

− 2Gij(ω, τ)Re
(
e−jωτE [Yj(ω)Y

∗
i (ω)]

)
=Rjj(ω) +G2

ij(ω, τ)Rii(ω)

− 2Gij(ω, τ)Re
(
e−jωτRji(ω)

)
(3)

where Rji(ω) = E [Yj(ω)Y
∗
i (ω)], and imposing Gij(ω, τ) =

G∗
ij(ω, τ) enforces the gain to be real. The optimal positive real

gain is found as a constrained optimization according to
Gij(ω, τ) = argmin

G
{CG(ω, τ)} subject to G ≥ 0 (4)

using the Kuhn-Tucker method [12]:

Gij(ω, τ) =

{
0 Rdir

ji (ω, τ) < 0
Rdir

ji(ω,τ)

Rii(ω)
Rdir

ji (ω, τ) ≥ 0
(5)

where Rdir
ji (ω, τ) = Re

(
e−jωτRji(ω)

)
.

3.1. Fullband Steered Null Error (SNE)

The fullband prediction gain, Pfb(τ), of microphone signal j, yj(n),
from microphone signal i, yi(n), is given by

Pfb(τ) =10 log10

(
E
[
y2
j (n)

]
E
[
e2ij(n)

])

=10 log10

(
E
[∑

ω Yj(ω)Y
∗
j (ω)

]
E
[∑

ω Eij(ω, τ)E∗
ij(ω, τ)

])

=10 log10

(∑
ω E

[
Yj(ω)Y

∗
j (ω)

]∑
ω CG(ω, τ)

)
,

(6)

where CG(ω, τ) is given by Eq. 3 with Gij(ω, τ) given by Eq. 5.
Technically, the fullband TDOA is found as the delay that maximizes
the prediction gain:

τ fb
ij = argmax

τ∈
[
−

dij
c

,
dij
c

]Pfb(τ) (7)

However, since log10(x) is a monotonically increasing function, 1/x
is a monotonically decreasing function, and E

[
Yj(ω)Y

∗
j (ω)

]
is in-

dependent of τ , this is equivalent to

τ fb
ij = argmin

τ∈
[
−

dij
c

,
dij
c

]
∑
ω

G2
ij(ω, τ)Rii(ω)− 2Gij(ω, τ)R

dir
ji (ω, τ).

(8)
3.2. Fullband SNE-PHAT

Low-frequency content often dominates speech signals, and at low
frequencies (long wavelength) the spatial resolution is poor, result-
ing in a poorly-defined peak in the cost function expressed by Eq. 8.
Hence, it is advantageous to equalize the spectral envelope to some
degree in order to provide greater weight to frequencies where the
peak of the cost function is more clearly defined. Including such
equalization to the SNE results in the SNE-PHAT method. If the mi-
crophone spectra are normalized by their magnitude spectrum, then
the equalized cross spectra is given by

Req
ji(ω) =

Rji(ω)√
Rjj(ω)Rii(ω)

, (9)

with the power spectra being a special case: Req
ii(ω) = 1. Basing the

calculation of the optimal gain on the normalized cross and power
spectra results in the following optimal gain

Geq
ij(ω, τ) =

{
0 Rdir,eq

ji (ω, τ) < 0

Rdir,eq
ji (ω, τ) Rdir,eq

ji (ω, τ) ≥ 0
(10)

where Rdir,eq
ji (ω, τ) = Re

(
e−jωτReq

ji (ω)
)
. The fullband TDOA,

corresponding to Eq. 8, becomes

τ fb
ij= argmin

τ∈
[
−

dij
c

,
dij
c

]
∑
ω

Geq
ij(ω, τ)

(
Geq

ij(ω, τ)− 2Rdir,eq
ji (ω, τ)

)

= argmin

τ∈
[
−

dij
c

,
dij
c

]
∑
ω

CTDOA(ω, τ), (11)

where
CTDOA(ω, τ) = Geq

ij(ω, τ)
(
Geq

ij(ω, τ)− 2Rdir,eq
ji (ω, τ)

)
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=

{
0 Rdir,eq

ji (ω, τ) < 0

−
(
Rdir,eq

ji (ω, τ)
)2

Rdir,eq
ji (ω, τ) ≥ 0

(12)

is defined as the frequency-dependent cost function at frequency, ω,
and TDOA, τ , and

C fb
TDOA(τ) =

∑
ω

CTDOA(ω, τ) (13)

is the fullband cost function.
It should be noted that the normalization of Eq. 9 is identical to

that of GCC-PHAT, see Eq. 1, if the expectation operator is omit-
ted. While the expectation is not strictly necessary, it is beneficial
as it reduces the variance of the spectrum estimates. It can been im-
plemented as a simple 1st-order running mean with high leakage in
order not to compromise tracking of moving sources.

3.3. Frequency-Dependent SNE-PHAT

The unconstrained frequency-dependent TDOA follows directly
from Eq. 11 by searching the frequency-dependent cost function
according to

τij(ω)= argmin

τ∈
[
−

dij
c

,
dij
c

]CTDOA(ω, τ). (14)

A better estimate of the true underlying frequency-dependent TDOA
can be achieved by constraining the search to a vicinity of the full-
band TDOA, for example to a fixed range of ±δ. Additionally, spa-
tial aliasing results in false peaks (side lobes) in the cost function,
Eq. 12, at

τ(ω) = τtrue ± k
2π

ω
, k = 1, 2, ... (15)

and it is advantageous to constrain the search and exclude false peaks
from consideration, that is strict the search range to be within a frac-
tion 0 < K < 1 of the first lobe of spatial aliasing in either direction.
Combining the two constraints to the tighter of the two is beneficial
because: 1. The spatial aliasing constraint becomes unconstrained
at low frequencies, 2. The fixed constraints is not sufficiently con-
strained at high frequencies to prevent searching the side lobes. The
constrained frequency-dependent TDOA is found according to

τij(ω)= argmin
τ∈[τ fb

ij−∆τ (ω),τ fb
ij+∆τ (ω)]

CTDOA(ω, τ), (16)

where ∆τ (ω) = min
{
δ,K 2π

ω

}
. It should be noted that GCC-

PHAT can be extended in a similar manner to provide frequency-
dependent TDOA.

Figure 2 provides a qualitative example of the inner workings
of fullband and frequency-dependent SNE-PHAT TDOA estimation.
The figure provides an illustration of how the constrained frequency-
dependent TDOA prevents the selection of a TDOA corresponding
to side lobes from spatial aliasing.
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Fig. 2. Example of SNE-PHAT. Left to right: a. Magnitude spec-
trum of the microphone signals, b. Cost function for frequency-
dependent TDOA, CTDOA(ω, τ), c. Cost function for fullband
TDOA, C fb

TDOA(τ), in blue, fullband TDOA according to Eq. 11 at
red cross, d. Fullband TDOA in solid red, unconstrained frequency-
dependent TDOA in blue, frequency-dependent TDOA constrained
according to Eq. 16 in green (with parameters δ = 1.5 samples,
K = 0.4), and the TDOA constraints in dotted red.

3.4. Computational Complexity Considerations

Besides the performance, the computational complexity is an impor-
tant attribute. Expanding the expression for Rdir,eq

ji (ω, τ), calculating
it in pairs of TDOA candidates, ±τ , leads to

Rdir,eq
ji (ω,±τ)=Re

(
e∓jωτReq

ji(ω)
)
= cos (ωτ)

Re (Rji(ω))√
Rjj(ω)Rii(ω)

± sin (ωτ)
Im (Rji(ω))√
Rjj(ω)Rii(ω)

, (17)

where Rjj(ω) and Rii(ω) are real. Calculating Rdir,eq
ji (ω, τ) takes:

• 1 multiply, 1 square-root, and 1 division per frequency bin for
the inverse numerator (independent of the TDOA candidate),

• 2 multiplies per frequency bin to normalize the real and imag-
inary parts of Rji(ω) (independent of the TDOA candidate),

• 2 multiplies and 1 add per frequency bin per one half of
TDOA candidates, and 1 add per frequency bin per the other
half of TDOA candidates, to combine the cosine and sine.

From Eq. 12, CTDOA(ω, τ) can be calculated by 1 multiply per
frequency bin per TDOA candidate, disregarding the minus by
maximizing instead of minimizing. Calculating C fb

TDOA(τ) from
CTDOA(ω, τ) takes 1 add per frequency bin per TDOA candidate. A
similar account for GCC-PHAT of Eq. 1, exploiting similar tricks,
leads to the results shown in Table 1. Example parameter settings

Table 1. Complexity of GCC-PHAT and SNE-PHAT
Div Sqrt Mult Add WMOPS

Weight 20 20 1 1
GCC-PHAT 103 103 6592 12669 2.34
SNE-PHAT 103 103 12875 12669 2.97

for Table 1 comprise calculation over 61 candidate TDOAs, using
103 frequency bins (from a 256-point FFT), every 10 millisecond
(ms), with complexity weights as indicated in the table to get fi-
nal WMOPS (Weighted Million Operations Per Second) estimates.
Overhead for calculation of spectra, sine, and cosine was omitted.
Although SNE-PHAT is approximately 25% more complex than
GCC-PHAT, both take up a small portion of what a reasonable
budget for a complete multi-microphone algorithm would be.

Since CTDOA(ω, τ) is calculated as part of calculating C fb
TDOA(τ),

the constrained search of Eq. 16 is the only remaining task to carry
out to obtain the frequency-dependent TDOA. Hence, the frequency-
dependent TDOA can be obtained at a very small overhead.

4. EXPERIMENTAL RESULTS

In order to demonstrate the proposed methods, experiments were
carried out with the TDOA estimation module of a complete cel-
lular speakerphone mode system. Short-time spectral analysis was
implemented in the frequency domain with sampling frequency
fs = 8000 Hz, analysis window length L = 160 samples, win-
dow shift R = 80 samples, and FFT size K = 256 samples. The
TDOA estimation used two microphones, M = 2, with d12 = 120
mm spacing. Real-world acoustic data was collected with a 14-
microphone mock-up handset shown in Figure 3. The noise ro-
bustness of the proposed SNE-PHAT method is first compared to
the GCC-PHAT method in terms of fullband TDOA estimation ac-
curacy. Spectrally flat directional desired sources were created at
increments of 1o angle-of-incidence. Spherical diffuse noise was
generated as described in [13] and was added at different SNRs to
the desired source. The source tracking algorithms (SNE-PHAT
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Fig. 3. 14 microphone mock up handset for data collection.

and GCC-PHAT) were used to estimate fullband TDOA values, and
estimation error statistics were calculated in the form of mean and
variance of absolute error, combined in groups of 30 degrees as
shown in Table 2.

Table 2. Average absolute TDOA estimation error
True Angle SNR (dB) Absolute error: mean ± variance

GCC-PHAT SNE-PHAT
0 5.11± 16.15 3.97± 8.34

[0, 29] 10 2.45± 8.01 1.64± 3.21
20 2.11± 6.81 1.57± 2.68

0 1.20± 0.85 0.54± 0.23
[30, 59] 10 0.44± 0.11 0.29± 0.07

20 0.37± 0.05 0.28± 0.07

0 0.86± 0.45 0.38± 0.07
[60, 89] 10 0.33± 0.06 0.24± 0.02

20 0.27± 0.04 0.23± 0.01

As expected, estimation error increases with decreasing SNR
and with the angle of incidence ranging from broadside to end-fire.
The experimental results demonstrate that SNE-PHAT reduces both
the mean and variance of the absolute error, relative to GCC-PHAT,
particularly for low SNR conditions. This is advantageous as more
accurate raw TDOA estimates benefit subsequent processing in a
multi-microphone noise suppression system.

Table 3. BM suppression of DS with frequency-dependent TDOA.
Suppression of DS (dB)

SNR (dB) Diffuse (spherical) noise Interfering talker
Fullband Freq. dep. Fullband Freq. dep.

50 16.4 29.8 14.0 27.3
20 14.3 22.1 13.5 23.4
10 12.8 17.2 11.8 18.0

The performance of frequency-dependent TDOA estimation is
demonstrated with dual-microphone signals where a primary talker
is the desired source (DS) and spherical diffuse noise or an inter-
fering talker at various levels is the interfering source (IS). The per-
formance was quantified by measuring the suppression of the DS
by a blocking matrix (BM) [2]. The BM was adaptive with the
phase being determined from either fullband or frequency-dependent
TDOA, based on fixed smoothed statistics of the mixed DS and IS
sources. The BM amplitude was determined optimally from adap-
tively smoothed statistics of the mixed sources, given the BM phase.
The adaptive smoothing was provided as “Oracle” information in or-
der to prevent the post-processing of the raw TDOA from influencing
the results. Quantitative results measured over 30 seconds, compar-
ing fullband and frequency-dependent SNE-PHAT, are shown in Ta-
ble 3. Clearly, the frequency-dependent TDOA is relevant and offers
better suppression of the DS. A qualitative illustration with the DS
mixed with diffuse noise at 20 dB SNR is provided in Figure 4. The
better suppression of the DS with frequency-dependent TDOA is ev-

Time Time

Fig. 4. Top to bottom: waveform (left) and spectrogram (right) of;
a. BM input, BM output with, b. fullband TDOA, c. frequency-
dependent TDOA.

ident from both the time domain waveform and spectrogram of the
BM outputs.

The final experiment explores the tracking capability of a com-
plete multi-microphone acoustic scene-analysis module using raw
fullband TDOA estimates from SNE-PHAT. Acoustic signals were
captured using the device in Figure 3: A primary talker (DS) was
walking around a table with the device laying stationary on top while
music (IS) was playing on loudspeakers. Figure 5 shows the scatter
plot of raw TDOA estimates in black, and the trace of the TDOA of
the inferred DS using acoustic scene analysis from [8] in green. In
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Fig. 5. Estimated TDOA values based on the raw TDOA values.

a complex acoustic scene, raw TDOA estimates capture direct path
DS, DS reflections, and any IS (music in this case). Although the
raw TDOA estimates appear scattered, they are clustered around the
DS, and the cluster moves as the source moves at approximately 14
seconds. The DS TDOA trace in Figure 5 suggests that the post-
processing method is able to correctly track the DS, based on the
raw TDOA estimates from the SNE-PHAT method.

5. CONCLUSION

This paper presented a novel TDOA estimation algorithm inspired
by null-steering. Experimental results with simulated data demon-
strated that the SNE-PHAT method produces smaller localization er-
rors relative to the GCC-PHAT method, particularly in the presence
of noise. In addition, a generalization of fullband TDOA estimation
to frequency-dependent TDOA estimation was presented, and results
illustrated the benefits of using such frequency-dependent TDOA.
The computational complexity discussion in the paper showed the
proposed methods to be suitable for real-time implementation. In
a final experiment with the SNE-PHAT method as part of a com-
plete multi-microphone system with acoustic scene analysis to post-
process raw TDOA data and infer desired and interfering sources,
SNE-PHAT proved to result in good tracking of desired sources.
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