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ABSTRACT

Most state-of-the-art Sound Source Localization (SSL) algorithms
have been proposed for applications which are “uninformed” about
the target sound content; however, utilizing a wireless microphone
worn by a target talker, enables recent Hearing Aid Systems (HASs)
to access to an almost noise-free sound signal of the target talker
at the HAS via the wireless connection. Therefore, in this paper,
we propose a maximum likelihood (ML) approach, which we call
MLSSL, to estimate the Direction of Arrival (DoA) of the target
signal given access to the target signal content. Compared with
other “informed” SSL algorithms which use binaural microphones
for localization, MLSSL performs better using signals of one or
more microphones placed on just one ear, thereby reducing the wire-
less transmission overhead of binaural hearing aids. More specifi-
cally, when the target location confined to the front-horizontal plane,
MLSSL shows an average absolute DoA estimation error of 5 de-
grees at SNR of −5 dB in a large-crowd noise and non-reverberant
situation. Moreover, MLSSL suffers less from front-back confusions
compared with the recent approaches.

Index Terms— Sound source localization, HRTFs, Direction of
Arrival, Maximum Likelihood, Hearing Aid Systems.

1. INTRODUCTION

Sound Source Localization (SSL) has been investigated in many ap-
plications, such as robotics [1, 2, 3], video conferencing [4], and
hearing aids [5]. In a sense, SSL is a primitive task which would im-
prove performance of higher level tasks. For example, in a Hearing
Aid System (HAS), knowing the location of the target sound may
improve noise reduction algorithms [6, 7], leading to better speech
enhancement performance.

In general, different acoustic localization strategies using micro-
phone arrays have been investigated [8, ch. 8]:

• Steered-Beamformer-Based Location Estimators: these methods
steer the beam to the potential sound source locations and search
for a maximum in output power (termed focalization) [9].

• High-Resolution-Spectral-Estimation-Based Location Estima-
tors: these methods exploit the spatiospectral correlation matrix
obtained from the microphones signals. Under certain assump-
tions, the sound source locations can be derived from a lower-
dimensional vector subspace embedded within the signal space
spanned by the columns of the correlation matrix [8, ch. 8].

• Time-Difference-of-Arrival (TDoA)-Based Location Estimators:
these methods use a set of TDoA estimations of the signals reach-
ing each pair of microphones to estimate the sound source location
[8, ch. 8][10].

Wireless body-

worn microphone at 

the target talker

Hearing aid 

microphones

Acoustic Propagation 

Channel

Direction of Arrival

Ambient Noise 
(e.g. competing talkers)

Wireless Connection

Fig. 1: SSL scenario for a hearing aid system using a wireless mi-
crophone: rm(n), s(n) and hm(n) are the noisy received sound, the
noise-free target sound and the corresponding HRIR for microphone
m, respectively. s(n) is available at the hearing aid via wireless con-
nection to the wireless microphone at the target talker. Estimating
the direction of arrival θ is the goal in this scenario.

When the microphone array is located next to the ears, like in
HASs or humanoid robots, bio-inspired binaural cues, such as Inter-
aural Time Difference (ITD), Interaural Intensity Difference (IID)
and monaural cues represented by Head Related Transfer Functions
(HRTFs) [called Head Related Impulse Responses (HRIRs) in the
time domain] are often used for SSL [11]. Roughly, humans are
thought to use ITDs for low frequency components, up to approx-
imately 1500 Hz, and IIDs for higher frequency components [12].
For monaural spatial hearing, humans are believed to utilize the
spectral filtering of the incoming sound at the head, torso and pinnae
[11], i.e. filtering of the incoming sound through HRTFs.

Most current SSL algorithms have been proposed for applica-
tions which are “uninformed” about the target source signal content
[1, 3, 4], i.e. they do not have any access to the noise-free target
signal content. However, recent advances in wireless technology en-
ables new HASs, where the target talker is wearing a wireless mi-
crophone, to have access to an essentially noise-free version of the
target signal [5]. This turns the “uninformed” SSL problem into the
“informed” SSL problem considered in this paper.

Fig. 1 depicts the system considered in this paper. The target
signal s(n) is transmitted through the acoustic channel hm(n) and
reaches the mth microphone of the HAS. Due to additive environ-
mental noise, a noisy signal rm(n) is received at the mth micro-
phone. Moreover, the noise-free target signal s(n) is also transmit-
ted to the HAS via the wireless connection. We aim at estimating the
target signal Direction of Arrival (DoA) θ based on these signals.
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In HASs, since microphones are located at the ears, the acoustic
shadowing effects of the user’s head and torso cause hm(m) to de-
pend on θ [11]. However, for simplicity, many SSL algorithms, e.g.
[5, 10], assume a free field situation and disregard the user’s head and
torso acoustic shadowing effect, causing the location estimation per-
formance to be reduced. In this paper, we propose a method which
does take the head presence into account to distinguish directions,
thereby improving localization performance. The proposed method
is a maximum likelihood approach; therefore, we call it Maximum
Likelihood Sound Source Localization (MLSSL).

2. SIGNAL MODEL

Fig. 1 shows the situation at hand: the noisy received sound signal
rm(n) at microphone m is a result of the convolution of the target
signal s(n) with the acoustic channel impulse response hm(n) from
the target talker to microphone m, and is contaminated by additive
noise vm(n). For each microphone of the HAS, we can write:

rm(n) = dm(n) + vm(n), m = 1, · · · ,M , (1)
dm(n) = s(n) ∗ hm(n), (2)

where M ≥ 1 is the number of available microphones, n is the
discrete time index, and ∗ is the convolution operator.

Most state-of-the-art HASs operate in the short time Fourier
transform (STFT) domain because it allows frequency dependent
processing, computational efficiency and low latency algorithm im-
plementation. Therefore, let

S(l, k) =
∑
n

s(n)w(n− lA)e−
j2πk
N

(n−lA), (3)

Dm(l, k) =
∑
n

∑
t

hm(t)s(n− t)×

w(n− lA)e−
j2πk
N

(n−lA)

=
∑
n

s(n)
∑
t

hm(t)×

w(n+ t− lA)e−
j2πk
N

(n+t−lA) (4)

denote the STFT representations of s(n) and dm(n), respectively,
where l and k are frame and frequency bin indices, respectively,N is
the frame length, A is the decimation factor, w(n) is the windowing
function, and j =

√
−1 is the imaginary unit. Moreover, let

Hm(k) =
∑
t

hm(t)e−
j2πkt
N (5)

denote the discrete Fourier transform of hm(n), where N is
greater or equal to the duration of hm(n). Eq. (4) implies that
Dm(l, k) 6= S(l, k)Hm(k). However, if the support of w(n) is
smoothly long enough compared with the duration of hm(n), then
w(n− t)hm(t) ≈ w(n)hm(t) [13]; in this case, we find:

Dm(l, k) ≈
∑
n

s(n)w(n− lA)e−
j2πk
N

(n−lA) ×

∑
t

hm(t)e−
j2πk
N

(t) (6)

= S(l, k)Hm(k), (7)

i.e.Dm(l, k) can be approximated as a point-wise multiplication of
S(l, k) and Hm(l, k) [13]. With this approximation, Eq. (1) can be
approximated in the STFT domain as:

Rm(l, k) = S(l, k)Hm(k) + Vm(l, k), (8)

where Rm(l, k) and Vm(l, k) are STFT coefficients of the received
signal and noise signal for the mth microphone, respectively, and
are defined analogously to S(l, k) in Eq. (3).

Collecting the M microphone equations (Eq. (8)) in a column
vector gives rise to the following signal model:

R(l, k) = S(l, k)H(k) + V (l, k), (9)

where
R(l, k) = [R1(l, k), R2(l, k), · · · , RM (l, k)]T, (10)

H(k) = [H1(k), H2(k), · · · , HM (k)]T, (11)

V (l, k) = [V1(l, k), V2(l, k), · · · , VM (l, k)]T. (12)

3. MAXIMUM LIKELIHOOD ESTIMATION OF DOA

The acoustic shadowing effects of the head and torso cause H(k) to
depend on θ [11]; therefore, if we possess a prestored databaseH =
{H1,H2, · · · ,HI}, which consists of I sets of HRTFs labelled by
their corresponding θ, the target θ may be estimated by finding the
best candidate inH. In fact,H is a discrete model of the continuous
space of HRTFs. To find the best Hi in H based on the received
signals, we introduce a maximum likelihood strategy.

Let us assume that V (l, k) in Eq. (9) is a zero-mean, circularly-
symmetric complex Gaussian random vector, i.e. V (l, k) ∼
N (0,CV (l, k)), where CV (l, k) is the inter-microphone noise
covariance matrix. Since we assume the target signal is picked up
without any noise by the wireless microphone, S(l, k) is available
at the HAS, and we consider it as deterministic and known. H(k) is
also considered deterministic but unknown (H ∈ H). Hence, from
Eq. (9) follows:

R(l, k) ∼ N (S(l, k)H(k),CV (l, k)). (13)

Since S(l, k) is available at the HAS, we can relatively eas-
ily determine the time-frequency regions in the noisy microphones
signals where the target speech is essentially absent; therefore, we
adaptively estimate CV (l, k) using exponential smoothing over the
frames where the noise is dominant. Furthermore, for mathematical
convenience, we assume that the noisy observations are independent
over time and frequency. Therefore, the likelihood function of each
Hi ∈ H regarding the received signals at frame l is defined as:

fl(R, S;Hi) =

l∏
j=l−D+1

K∏
k=1

1

πM |CV (j, k)|
e{−ZH

i (j,k)C−1
V

(j,k)Zi(j,k)},(14)

where Zi(j, k) = R(j, k) − S(j, k)Hi(k), and |.| and H denotes
the matrix determinant and Hermitian transpose operator, respec-
tively. D is the number of frames and K is the number of frequency
indices used to compute the likelihood. It should be noted that we
assume that the target source location is fixed across D frames. The
corresponding log-likelihood function is given by:

Ll(Hi) = −MDK log π −
l∑

j=l−D+1

K∑
k=1

log |CV (j, k)| −

l∑
j=l−D+1

K∑
k=1

ZH
i (j, k)C

−1
V (j, k)Zi(j, k), (15)

leading to the maximum likelihood estimation of the HRTF:

HML = argmax
Hi∈H

Ll(Hi), (16)

from which the corresponding DoA estimate θ̂ follows. We solve
Eq. (16) via an exhaustive search inH.
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Fig. 2: Experiment setup. In an anechoic chamber, 72 loudspeakers,
represented by arrows, are placed on a circle with radius 1.5 m in the
horizontal plane centered at the HATS. Microphones locations are
represented by × behind the left ear of the HATS (i.e. around 90◦).

4. SIMULATIONS RESULTS

4.1. Experiment setup
Fig. 2 shows the situation considered for assessing the algorithm.
The target source is assumed to be placed at one of 72 uniformly
spaced possible positions, i.e. with a 5 degrees resolution, on a circle
in the horizontal plane with radius 1.5 m centered at a head-and-
torso-simulator (HATS). Behind the left pinna of the HATS a two-
microphone behind-the-ear (BTE) hearing aid is placed. The dis-
tance between front and rear microphones is 12 mm, and the sam-
pling frequency of the microphone signals is 20 kHz. The other sim-
ulation parameters are as follows: N = 2048 samples, A = 1024
samples, and D = 2. H consists of I = 72 sets of HRTFs, mea-
sured from each loudspeaker to microphones, and the target speech
signal is a 10-second sample of the ISTS signal [14] composed of 21
female voices in 6 different languages. To approximate a practical
large-crowd noise field, we play back different speech signals from
each of the I = 72 target positions simultaneously. The database
provided by [15], which consists of different male and female voices,
is used as noise sound sources.

When the power of the noise sources is fixed, then the signal-to-
noise-ratio (SNR) observed at each of the microphones is a function
of θ since the target signal is filtered by the head and torso of the
HAS user. Specifically, the SNR is generally reduced when the mi-
crophone is in the “shadow” part of the head compared with the case
where the microphone is in the “sunny” part. Moreover, for the same
θ, “sunny” part microphones have higher SNRs than “shadow” part
microphones; therefore, the reference SNRs of the simulations are
expressed relative to the Left-Front microphone and θ = 0◦.

As performance metrics, we define the percentage of the DoA
correct detection and the DoA estimation mean absolute error
(MAE) in the following. Let Qθ denote the number of frames
for which θ̂ = θ. The percentage of the DoA correct detections is:

Pθ =
Qθ
L
× 100, (17)

where L is the total number of frames of the received signals. More-

over, the mean absolute error (MAE) of the DoA estimation is given
by:

σθ̂ =
1

L

L∑
j=1

|θ − θ̂j |, (18)

where θ̂j is the estimated DoA for the jth frame of the signal.

4.2. MLSSL using one microphone
In contrast to other SSL algorithms which often use two micro-
phones, MLSSL allows us to estimate θ with just one microphone.
Figs. 3a and 3b show the MLSSL performance in terms of Pθ and
σθ̂ at a reference SNR of 0 dB for the full-band signal using M = 1
microphone signal (the Left-Front microphone). As can be seen, Pθ
drops when the target is located at the sides of the HATS (i.e. θ ≈
−90◦ and θ ≈ 90◦), compared with when the target is in front
(θ ≈ 0◦) or behind (θ ≈ 180◦). On the other hand, σθ̂ in Fig. 3b
shows that even though MLSSL has lower Pθ for θ close to −90◦
or 90◦, the MAE is less than the cases where θ is close to 0◦ or
180◦. To explain these behaviours, we plot the MLSSL confusion
matrix shown in Fig. 4. Each column of the matrix relates to a θ,
and represents the normalized histogram of θ̂s for that particular θ.
The almost red diagonal of the matrix shows that MLSSL is gener-
ally successful in estimating the θ. However, the two parallel anti-
diagonal lines show that when MLSSL fails in detecting the correct
θ, then the most probable cause of errors is a front-back confusion.
Front-back confusions result in larger estimation errors for the θs in
the front or back of the HATS than the left or right sides θs and ex-
plain the higher σθ̂ around θ = 0◦ or 180◦. As mentioned before,
the SNR is a function θ and is almost higher for θ ≈ 90◦ when the
microphones are on the left ear, but since influences of the head and
torso are small for θ ≈ 90◦, their HRTFs are locally very similar
and cause local errors and relatively low Pθ . Finally, as can be seen
in Fig. 3b, σθ̂ is generally higher when θ ∈ [−180◦, 0◦] since the
microphone is in the head shadow region, and the SNR is lower.

4.3. Comparison with the state-of-the-art
Courtois et al. in [5] recently introduced the informed SSL problem
and proposed a solution based on ITD and binaural signals. They use
the wirelessly received noise-free target signal as a time reference to
estimate the ITD, and then to estimate θ, they resort to a “sine law”
[5]. This causes their method to be unable to differentiate between
front and back angles, e.g. θ = 45◦ and θ = 135◦. Although
MLSSL does not have this limitation, for comparison, we consider
the frontal horizontal plane only.

Fig. 5 shows σθ̂ for MLSSL using one or two microphones
placed behind the left ear, compared with the Courtois et al. method
[5]. As can be seen, MLSSL performs significantly better for all θs.
The Courtois et al. results are symmetric with respect to θ = 0 since
they use binaural signals, but MLSSL results are asymmetric be-
cause microphones are located at one ear only, and the head shadow
influences signals which are coming from left and right differently.
Furthermore, comparing Figs. 5 and 3b shows that knowing a priori
that θ is in the frontal plane, improves the MLSSL σθ̂ significantly
by eliminating front-back confusions.

In practice, since θ is a continuous variable, it may be repre-
sented exactly by none of the HRTFs inH. To assess MLSSL perfor-
mance in this situation, we made a reduced databaseH′ by eliminat-
ing every other HRTF fromH, i.e. there is no HRTF inH′ for half of
the considered θs. Fig. 6 shows MAE of the methods averaged over
all the frontal θs as a function of SNR. As expected, MLSSL has the
best performance when θ is represented in the database. But when θ
is not in H′, MLSSL mostly finds the nearest DoA in the database,
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Fig. 3: MLSSL simulation results for the left-front microphone at 0 dB SNR.
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Fig. 4: Confusion matrix of MLSSL for the left-front microphone at
0 dB SNR.

which means that the resolution of the database is a key factor that
influences DoA estimation performance using MLSSL.

5. CONCLUSION AND FUTURE WORK

In this paper, we formulated a target sound DoA estimation prob-
lem for a new infrastructure of hearing aid systems, which employs
a wireless microphone worn by a sound source of interest. To solve
the problem, we considered a maximum likelihood strategy which
exploits the noise-free target sound and pre-stored HRTFs. In sim-
ulations, MLSSL showed better performance than a recent binaural
method proposed by Courtois et al. in [5] even when MLSSL uses
only a single microphone. The proposed framework is flexible and
easily scalable to any number of microphones. Considering an intel-
ligent search instead of an exhaustive search in the HRTFs database
would decrease the computation overhead, and moreover, consider-
ing elevation and range in addition to the azimuth will generalize the
method. Furthermore, robustness to reverberation is an important
issue for SSL. These topics will be investigated in future work.
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Fig. 5: Performance comparison of MLSSL with the Courtois et al.
method for the frontal plane DoAs at the reference SNR of 0 dB.
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