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ABSTRACT
A method for direction-of-arrival (DOA) and diffuseness es-
timation is presented, which proves to be effective above the
spatial aliasing frequency of the microphone array in use. The
method assumes symmetrical circular or spherical arrays of
directional microphones or microphone mounted on a rigid
baffle, and it exploits the inherent directionality of the array
at high frequencies. The DOA and diffuseness estimators are
shown to exhibit low estimation error above the spatial alias-
ing limit, compared to commonly used intensity-based esti-
mators. A low-error broadband scheme that combines the
intensity-based method and the new one is proposed for the
ranges below and above aliasing respectively.

Index Terms— DOA, diffuseness, direct-to-diffuse ratio,
microphone arrays, spatial aliasing

1. INTRODUCTION

In parametric time-frequency processing of array recordings,
many practical scenarios can be adequately modeled as the
contribution of a single source, the direct sound, and reverber-
ation. A further practical assumption considers the reverber-
ant sound as perfectly diffuse and isotropic [1]. In this case,
the model parameters that define the sound field properties
are the direction-of-arrival (DOA) of the direct sound and the
power of the direct and diffuse components. Equivalently, a
power relation can be estimated such as the direct-to-diffuse
ratio (DDR), or the diffuseness [1, 2] expressing the power
ratio of the diffuse part over the total.

Estimation of DOA and diffuseness, or DDR, permits the
application of beam-forming and optimal filtering techniques
to the array signals with applications such as signal enhance-
ment [3, 4], parametric spatial sound recording and reproduc-
tion [2, 5] and dereverberation [6]. Commonly used estima-
tors for both DOA [7, 8, 9] and diffuseness [1, 2] are based on
statistics of the sound intensity in a direct-plus diffuse sound
field model. We call these estimators intensity-based (IB)
ones. Spatial aliasing affects the performance of IB since
the required pressure gradient signals are aliased above the

limiting frequency of the array. This effect can be detrimen-
tal, if it occurs in the frequency range of interest. In applica-
tions where perceived spatial quality and coloration are criti-
cal, such as spatial sound reproduction, erroneous estimation
results in loss of perceived quality [5].

Recently, a DDR estimator based on a least-squares solu-
tion on short-time power estimates of directional microphones
was proposed in [10], which would be unaffected by spatial
aliasing. That estimator requires separately a DOA estimate,
which at high frequencies may be unreliable due to aliasing.
DOA estimation under aliasing conditions have been studied
to some extent, e.g. in [11] and references therein. Most of
these approaches involve a search over the parameter space
and consider broadband localization. Hence, computational
efficiency and frequency resolution which are required for ap-
plications such as the aforementioned spatial audio recording
and reproduction, are not necessarily met.

We propose a simple novel estimator of DOA and diffuse-
ness that operates above the spatial aliasing limit. Similar
DOA estimation was applied previously by the authors for
a 3D tetrahedral array [5], without analysis of its properties.
Certain conditions regarding the array properties should be
met for unbiased estimation, which are detailed below. Fur-
thermore, a new diffuseness estimator based on directional
statistics is proposed. Their performance is evaluated with
simulations and measurements of a spherical 3D array.

2. SIGNAL MODEL

The estimation is performed in the time-frequency domain,
where k denotes discrete frequency index and t time-frame
index. In this work a short-time Fourier transform (STFT)
is utilized. Spherical coordinates are defined as r = (r,Ω),
with azimuth-elevation Ω = (θ, φ) or azimuth Ω = θ for the
3D and 2D case respectively. Integration

∫
Ω

dΩ refers to in-
tegration over the unit sphere

∫ π
−π
∫ π

0
sinφdφdθ or over the

circle
∫ π
−π dθ for the 3D and 2D case. A unit vector oriented

at Ω is written as n(Ω). The sound-field is modeled as a su-
perposition of a source signal sdir, and a diffuse signal sdiff
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corresponding to diffuse sound such as late reverberation.
The following assumptions are made for the sound

field. The direct and diffuse sound signals are uncorrelated:
E [sdir(k, t)s

∗
diff(k, t,Ω)] = 0. Furthermore, the diffuse

sound is uncorrelated for different directions and has equal
power, Pdiff , for all directions The theoretical DDR is then
Γ(k) = Pdir(k)/(APdiff(k)), with A = {2π, 4π} for 2D or
3D fields respectively. The diffuseness is related to the DDR
by

ψ(k) = 1/(1 + Γ(k)). (1)

Diffuseness is bounded between ψ ∈ [0, 1], with zero value
indicating a single plane wave and unity a purely diffuse field.

Considering an array of Q microphones at positions
rq, q = 1, 2, ..., Q, the signal vector captured by the mi-
crophone array is given by

x(k, t) = h(k,Ωdir)sdir(k, t) (2)

+

∫
Ω

h(k,Ω)sdiff(k, t,Ω) dΩ,

where the vector h(k,Ω) = [h1(k,Ω), ..., hQ(k,Ω)]T con-
sists of the steering vectors of the array to direction Ω and
Ωdir the direction of the direct component.

3. DOA ESTIMATION BASED ON MAGNITUDE
SENSOR RESPONSE

The proposed estimators are based on the following assump-
tions concerning the microphone array:

• The array consists of microphones that provide some di-
rectionality.

• The array consists of microphones with similar axisym-
metric patterns, so that |hq(Ω)| = |h(αq)| where αq =
arccos(nT (Ω)n(Ωq)) is the angle between the DOA and
the orientation of the microphone Ωq .

• The microphones in the array are at the same radius
||rq|| = R and are symmetrically distributed. The sym-
metry can be expressed as NT

QNQ = (κ/Q)Iκ, where
NQ = [n(Ω1), ...,n(ΩQ)]T is the matrix with the unit vec-
tors pointing to the microphone positions and κ = {2, 3}
for the 2 and 3-dimensional case respectively.

These conditions hold in practice for many practical cases,
such as uniform circular arrays of directional microphones
and symmetric arrangements of omnidirectional microphones
mounted on rigid cylindrical or spherical baffles.

3.1. Single plane-wave case

First we consider the case of a single plane wave incident
from Ωdir. Assuming that we have a continuous array of di-
rectional elements and radius R, the pressure captured on its

circumference or surface can be expressed by

p(k, t, R,Ω,Ωdir) = sdir(k, t)h(k,R, α), (3)

where α = arccos(nT (Ωdir)n(Ω)) is the angle between the
DOA of the plane wave and the measurement point. The
complex directional response h(k,R, α) includes phase dif-
ferences at each array point. Examples of h for some common
cases are

h(k,R, α) =



ei(ω/c)R cosα[β + (1− β) cosα], (a)

B0(ωR/c) + 2

∞∑
n=1

inBn(ωR/c) cosnα, (b)

∞∑
n=0

in(2n+ 1)bn(ωR/c)Pn(cosα), (c)

(4)
where (a) are open arrays of common first-order directional
microphones with β ∈ (0, 1), both for circular and spheri-
cal ones, (b) omnidirectional microphones on a rigid cylin-
der, and (c) omnidirectional microphones on a rigid sphere.
The quantities Bn, bn are radial weights that depend on the
radius of the array [12]. The pressure responses of (4) can
be decomposed in a magnitude directional distribution and a
phase distribution. The magnitude part is known to be sym-
metric around the DOA and with its maximum at it. For the
case (a) of first-order microphones it is evident that it re-
duces to the magnitude of the first-order directional pattern
|h(k,R, α)| = |β + (1− β) cosα| and is independent of fre-
quency. Based on this property, a DOA estimator is proposed
by taking the integral of the unit vector across all directions,
weighted with the magnitude distribution as in

rDOA(k, t,Ωdir) =

∫
Ω

|p(k, t, R,Ω,Ωdir)|n(Ω) dΩ

= |sdir(k, t)|
∫

Ω

|h(k,R, α)|n(Ω) dΩ.

(5)

It is evident that in the case that the array does not exhibit
any directionality, such as an open array of omnidirectional
microphones with constant |h(k,R, α)|, the integral vanishes
and the estimator is zero. Otherwise, the unit vector in the
integral is weighted with a symmetric pattern and the result-
ing vector points to the maximum of that pattern which is the
DOA of the plane wave.

3.2. Discretization

In practice and for a real discrete array the DOA vector can
be estimated by approximating the integration of (5) with the
discrete summation of

r̂DOA(k, t) =

Q∑
q=1

|xq(k, t)|n(Ωq) (6)
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Fig. 1. Mean directional error for tetrahedral arrangement and
cardioid sensors of spherical order ranging from N = 1 : 10.

for an array of Q uniformly arranged microphones where Ωq
the direction of each microphone. The product of the magni-
tude of the microphone signals xq and the unit vectors n(Ωq)
pointing at the microphones approximate the integral with
zero error subject to some conditions. Essentially the inte-
gration error is determined by the spherical order of the mag-
nitude directivity of the array |h(k,R, α)| and the number of
microphones. The directivity functions form spherical or cir-
cular polynomials of certain order which can be integrated
exactly by a sum on a finite uniformly arranged set of points.
The estimator integrates the product of an N -th order pat-
tern with the components of the unit vector, which themselves
constitute first-order patterns (dipoles). Hence, the combined
order of the product is N + 1. Examples of the minimum
number of microphones and their arrangements that meet this
requirement can be found tabulated in [13] and are termed t-
designs, where t = N+1 refers to the order of the polynomial
to be integrated.

An example is given for a minimal 3D array using four
cardioid microphones at the vertices of a tetrahedron, known
in spatial sound recording literature as the A-format micro-
phone [14]. A tetrahedral arrangement approximates exactly
integration of patterns up to second order [13], hence the es-
timator should be unbiased only for cardioid microphones of
N = 1. This effect is demonstrated in Fig.1, where the order
of the cardioid is switched from N = 1 to N = 10 by follow-
ing the relation dcard(α) = (1/2)N (1 + cosα)N . The root-
mean squared error (RMSE) is computed between the true
DOA and the estimated one, averaged over 162 DOAs uni-
formly distributed around the array. It is noted that the effect
of the microphones to the estimation resembles the problem
of spatial aliasing, but is fundamentally different. DOA es-
timators based on some kind of beamforming, including the
IB ones, will become erratic above the spatial aliasing limit
independently of the responses of the microphones. The pro-
posed estimator does not depend on inter-microphone phase
relations and is not affected by aliasing.

4. DIFFUSENESS AND DDR ESTIMATION

Estimation of the diffuseness and the DDR, in the case of IB
estimators, is done through the normalized intensity-energy
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Fig. 2. Theoretical diffuseness curve and estimated one for a
tetrahedral arrangement and ideal cardioid sensors.

density ratio [1, 2], which suffer at high frequencies from spa-
tial aliasing. Based on the DOA vector of (6), a potential al-
ternative could be the estimator of [15] based on the temporal
variation of intensity vectors, replaced by the DOA vectors of
(6). However, that estimator considers the statistics of inten-
sity vectors including their magnitude, and the DOA vectors
of (6) are in general not proportional to intensity.

We propose a new diffuseness and DDR estimator, based
on the spherical variance of the DOAs of (6) in the presence
of diffuse sound, which does not consider the magnitude of
the DOA vectors. More specifically, the mean vector of the
observed DOAs is

ρ̂(k) = E

[
r̂DOA(k, t)

||r̂DOA(k, t)||

]
. (7)

An estimate of the plane-wave DOA in the presence of diffuse
sound is then given by the direction of the mean vector

n(k, Ω̂dir) =
ρ̂(k)

||ρ̂(k)||
. (8)

Diffuseness can be computed from a normalized measure of
the spherical spread of the DOA estimates, which should be
perfectly concentrated for a plane wave, and uniformly dis-
persed for a purely diffuse field. This measure corresponds to
the spherical variance [16], which is bounded between zero
and one for these two cases and is given by

ψ̂(k) = 1− ||ρ̂(k)||. (9)

From this definition of diffuseness, the DDR can be readily
computed as

Γ̂(k) =
1

ψ̂
− 1 =

||ρ̂(k)||
1− ||ρ̂(k)||

. (10)

The expectation operator is approximated by a finite average
over a number of time frames or a recursive scheme.

The fact that the estimator follows the theoretical diffuse-
ness is shown in Fig. 2. A diffuse field is simulated as the
sum of 162 complex exponentials with uniformly distributed
random phases and with uniform DOAs, derived from sub-
sequent divisions of the edges of an icosahedron. The direct
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Fig. 3. Directional error for a measured (solid line) and sim-
ulated (dashed line) Eigenmike, with the proposed magni-
tude sensor response method (MSR) (red) and the IB method
(blue). The combined estimator is marked on top (black).

component is modeled as another complex random exponen-
tial incident from the north pole. The relative power of the
two components is adjusted to result in a specific DDR, for
which the theoretical diffuseness is computed from (1). For
the same tetrahedral first-order array, the components are en-
coded to the array signals and the spherical variance (SV) es-
timator of (9) is applied for 100 realizations. The same is re-
peated for the temporal variation (TV) estimator of [15]. The
proposed SV estimator approximates closely the theoretical
curve, with minor deviation due to finite averaging effects,
while the TV estimator exhibits a clear bias.

5. MEASUREMENTS AND EVALUATION

Real-world sensors will exhibit a frequency-dependent direc-
tionality, with a response approaching omnidirectional at low
frequencies, and usually becoming more directional at high
frequencies. This effect is inherent in array designs based
on a scattering body, such as microphones mounted on a rigid
sphere or cylinder [12]. To test the performance of the method
under realistic conditions, DOA estimation is performed for a
dense grid of measurements of a 3D spherical array of 32 mi-
crophones mounted on a rigid sphere of radius R = 4.2 cm
(Eigenmike1), along with its simulated ideal version. The ar-
ray geometry is that of a truncated icosahedron and is near-
symmetrical. Apart from the proposed estimator of (6), the
IB estimator is also applied, as proposed in [2]. The aliasing
frequency limit is determined with the approximate formula
fal = c/(2Rγ), where γ is the angle between two micro-
phones. Fig. 3 depicts the root mean-square error (RMSE)
of the DOA and it is evident that the two estimators are com-
plementary; the proposed has very low error above aliasing
and performs worse at lower frequencies due to noise and de-
creasing directionality, while the IB estimator performs well
at this range and breaks above aliasing. Hence, broadband
low-error estimation can be achieved through a combination
of the two methods at different ranges, as is shown in Fig. 3
with the combined line. An RMSE below 8o for the whole
audible bandwidth is achieved with the combined approach.

1http://www.mhacoustics.com/products#eigenmike1
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Fig. 4. Diffuseness error (%) for proposed method (top),
the IB method (middle) and the combined estimator (bottom)
for five true diffuseness values ψ = 0 : 0.25 : 1. Results
are shown both for an ideal simulated Eigenmike (continuous
lines) and based on a measured one (dashed lines). Note the
different error scale in each plot.

The diffuseness estimation error, following a similar pro-
cess as in Fig. 2, is show in Fig. 4 as percentage error (%)
for different target diffuseness values. A similar trend as the
DOA RMSE is evident. At low frequencies, low direction-
ality makes the proposed estimator non-robust to noise and
the slight asymmetry of the array, while above aliasing the er-
ror drops towards zero. The resulting error in the combined
estimator is on average below 10%.

6. CONCLUSIONS

This work presents an estimation approach for DOA, dif-
fuseness and DDR, that exploits the directionality of the
magnitude response of a symmetrical array in a single-source
plus diffuse-sound model. DOA estimation performs well
above the spatial aliasing limit, subject to the properties of
the microphones and some geometrical considerations for
their arrangement. A novel diffuseness and DDR estima-
tor is proposed as well, based on the spherical variance of
the predicted DOA of the direct-sound, in the presence of
diffuse sound. It is shown through simulations and mea-
surements that both estimators complement effectively the
commonly used intensity-based ones, and their combination
offers broadband low-error estimation at all frequencies.
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