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ABSTRACT

The presentation concerns the assessment of disordered voices
produced by dysphonic speakers. The empirical mode
decomposition algorithm is used to decompose the log of the
magnitude spectrum of the speech signal into its harmonic,
envelope and noise components and the harmonic-to-noise ratio
(HNR) is used to summarize the overall quality of the disordered
voices. The present study aims at improving a previously proposed
algorithm by incorporating an appropriate method that estimates
automatically the thresholds required by the algorithm without
knowledge of the fundamental frequency and combining the
temporal acoustic marker named segmental signal-to-
dysperiodicity ratio (SDRSEG) with the harmonic-to-noise ratio in
order to predict the degree of perceived hoarseness. The
performances of the bivariate analysis-based approach for vocal
dysperiodicities assessment in terms of correlation of the predicted
perceived grade scores with the original perceived degree of
hoarseness are investigated using a large corpus comprising
concatenations of two Dutch sentences followed by vowel [a].

Index Terms— Disordered voices, harmonic-to-noise ratio,
empirical mode decomposition.

1. INTRODUCTION

Clinical evaluation of voice disorders is routinely based on listener
perception of speech. For example, clinicians rate the degree of
perceived overall abnormality, called grade, to monitor the voice of
patients. This method of evaluation is subjective, i.e. the outcome
is listener-dependent. A major drawback of perceptual ratings is
intra and inter-judge variability [1][2]. Experiments have shown
that to obtain reproducible evaluations, listeners must have
substantial experience in voice timbre rating.

In contrast to subjective measures, objective measures are obtained
from acoustic analysis of speech. Objective measures are of great
importance for clinical evaluation of voice disorders because the
analysis is noninvasive and provides a severity mdex of the
disorder which enables clinicians to monitor the progress of
patients and document quantitatively the perceived degree of
hoarseness. Despite the number of acoustic markers that have been
proposed in the literature to characterize the speech of dysphonic
speakers, finding reliable and accurate descriptors of voice
function and voice quality is still an issue.

Although there are various medical conditions that can affect the
voice, most of the disorders originate from the vocal system and
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frequently result in an increase in the dysperiodicity of voiced
speech sounds. Dysperiodicities may be caused by additive noise
owing to turbulence and modulation noise owing to external
perturbations of the glottal excitation signal, as well as
dysperiodicities due to intrinsically irregular dynamics of the vocal
folds [3][4]. As a consequence of these dysperiodicities, the energy
of the harmonic structure of the spectrum is decreased in favor of
that of the nonharmonic structure. Several acoustic markers used to
assess vocal fold function reflect the deviation of the speech
waveform from the perfect periodicity. For instance, jitter and
shimmer are frequently used to measure perturbations produced by
the wvariations in the fundamental period and amplitude,
respectively.

Most techniques for estimating vocal dysperiodicities have been
applied to steady fragments extracted from sustained vowels. The
widespread use of sustained vowels is due to the technical
feasibility of the analysis rather than clinical relevance. Recent
approaches proposed for vocal dysperiodicities estimation in
continuous speech are based on generalized variogram [5] and
cepstral analysis [6][7].

In [8], we proposed the empirical mode decomposition (EMD)
algorithm [9] as an alternative to decompose the log of the
spectrum magnitude of the speech signal into its harmonic,
envelope and noise components. The acoustic cue named
harmonic-to-noise ratio (HNR) is used to summarize the degree of
disturbance in the speech signal and consequently to evaluate the
overall quality of the disordered voices produced by dysphonic
speakers. The effectiveness of EMD-based spectral acoustic cues
for assessing disordered voices has been investigated in [10] and
their performances in terms of correlation with the perceived
degree of hoarseness have been compared to those of their
counterpart based on cepstral analysis. Experimental results have
shown that the EMD-based approach results in a high correlation
between HNR estimates and average perceived grade scores for
synthetic [a] as well as for natural speech.

In the method proposed in [8], the thresholds nvolved in the
algorithm for IMF clustering have been fixed empirically. These
thresholds are f0-dependent, so that, the method requires the
estimation of the average fundamental frequency for each stimulus.
The objectives of the present study are the following: i) improve
the algorithm by incorporating an appropriate method that
estimates automatically the thresholds without knowledge of the
fundamental frequency. ii) Combine the temporal acoustic marker
named segmental signal-to-dysperiodicity ratio (SDRSEG) [5]
with the HNR in order to predict the degree of perceived
hoarseness.
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The remainder of the paper is organized as follows. The EMD-
based method for log-magnitude spectrum decomposition is
introduced in Section 2. In Section 3, the bivariate analysis based
on the SDR and HNR acoustic cues is presented. Speech data and
perceptual ratings are described in Section 4. Results based on real
speech signals are presented in Section 5. Finally, conclusions are
given in Section 6.

2. METHODS
2.1. Speech components separation

A voiced speech frame x(#) can be modeled as a periodic source
component, e(f) convolved with the impulse response of the vocal
tract, W(¢) [117:

x(O=e(t)* (1) M

where * denotes the convolution.
Windowing the signal frame x(f) and taking the Fourier transform
magnitude gives

XDIEELN*V ()] 2
where X,(f), E.(f) are short-time magnitude spectra of the
windowed speech frame and windowed excitation signal,

respectively and V(f) is the frequency response of the vocal tract.
Taking the logarithm changes the multiplicative components into
additive components:

log|X, (/) =log|E.(f)|+log| (/)] 3)

From (3), it is observed that the log magnitude spectrum is the sum
of two spectral components: log/£,(f)|, the log magnitude spectrum
of the windowed excitation signal and log|V(f)|, the spectral
envelope due to the filtering characteristic of the vocal tract.
Because of the presence of aspiration noise at the glottis, the
excitation spectrum itself can be regarded as composed of two
parts: the first part is a regularly spaced series of harmonics
having a decreasing magnitude with frequency and the second part
is an irregularly distributed noise.

The log magnitude spectrum can be considered as composed of a
slowly varying (with respect to frequency) contour, noted Vz(f),
due the contribution of the vocal tract, a series of harmonics
characterized by a periodic structure, noted H(f), and an irregular
and rapidly varying part, noted N,(f), due to noise at the glottis.
The EMD algorithm yields a tool that enables to separate the three
components of the log magnitude spectrum. Indeed, the EMD
algorithm acts as a filterbank [12], so that the decomposition of the
log magnitude spectrum via the EMD algorithm results into several
oscillating components (IMFs, intrinsic mode functions) that can
be clustered into three classes and each class of components is
assigned to some part of the log magnitude spectrum.

In [8] the clustering of IMFs has been accomplished by a simple
thresholding operation. Let f; be the average quefrency of the jth-
IMF component of the log magnitude spectrum obtained via the
EMD algorithm. The different IMFs have been clustered by
comparing their mean quefrencies to fixed thresholds th;=0.3/f0
and thy=4/f0. A drawback of this clustering procedure is that it
requires the estimation of the average fundamental frequency of
the speech signal which is not possible for all speakers. In this
presentation, we propose a procedure for IMFs clustering that does
not require the estimation of the average fundamental frequency.

Let 0y, and 10, be the possible minimal and maximal average
fundamental frequencies, respectively. The IMFs belonging to the
harmonic component are determined according to the following
algorithm:

1. Find the sets of IMFs having average quefrencies within the
ranges (0.3/f0min, 4/f0min) and (0.3/f0max, 4/T0max)

0.3

<f'< ’ j:p()’p()-’_l""’pl (4'3')
fomin ! fomin
0.3 4
<fj< - J=40:90+L . q (4-b)
S Omax / S Omax

where po and p; denote, respectively, the lowest and highest IMF
indices the quefrencies of which are within the range (0.3/f0un,
4/f0m) while qo and ¢, denote, respectively, the lowest and highest
indices of IMFs having quefrencies within the range (0.3/f0x,
4/f01a).

2. Form all possible candidates of the harmonic component by
varying the lowest index between p, and q, and the highest index
between p; and q; and then summing the corresponding IMFs for
each combination of the indices

q
H}Z?(f):ZIMF», P=po-Po+Lq0 (%)
Jj=p
q=p1.p1+l-q

where the superscript pq indicates the lowest and highest indices of
the IMFs used to form a candidate of the harmonic component.

3. Compute the normalized autocorrelation sequence of each
candidate of the harmonic component H,g(f) and perform an
exhaustive search to find the normalized autocorrelation sequence
with the most prominent peak at a nonzero delay. A large peak of
the normalized autocorrelation sequence states for a high regularity
of the harmonic component. The estimated harmonic component is
given by

qh
Hug())= D IMF; (6)
J=pn
where p, and ¢, denote, respectively, the lowest and highest

indices of the IMFs that give rise to a normalized autocorrelation
with the highest peak at a nonzero delay.

Once the lowest and highest indices of the IMFs of the harmonic
component have been determined, the spectral envelope Vs(f) and
noise Ny(f) are estimated as

J
Vag(f)= D IMF;+r,(f) )
J=9h+1
pp-l

Ngg(f)= D IMF; (®)
j=1

where 7, is the residue of the decomposition.

As an illustration, Figure 1 shows the estimated components of the
log magnitude spectrum of a 200 ms frame taken from a sustained
vowel [a] produced by a normophonic speaker. The estimated
noise appears to be cyclic because noise energy dominates between
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harmonics locations and signal energy dominates at harmonic
locations [13].

2.2. Baseline correction

The baseline is the inter-harmonic contour. The baseline correction
is necessary because the IMFs are zero-mean oscillating functions
so that when the harmonics are large, the inter-harmonics should
cross zero to take negative values for compensation. Indeed, in the
estimated harmonic, the baseline dips slightly towards negative
values at low frequencies. The estimated envelope follows the
baseline closely at high frequencies and deviates slightly above the
baseline at low frequencies. The goal of the baseline correction is
to straighten out the baseline.

Each computed candidate of the harmonic component is subject to
a Dbaseline correction before computing the normalized
autocorrelation sequence. The baseline correction follows what is
used in [14] for spectral tilt correction. The correction is carried
out in double logarithmic coordinates where the envelope of the
harmonic component is almost a straight line. Firstly, a straight
line is fitted to the smallest 60% values of the log harmonic
component and secondly, the fitted line is subtracted from the
harmonic component and added to the spectral envelope to obtain
their respective corrected parts. The baseline correction has been
applied to the components shown in Fig 1.

3. BIVARIATE ANALYSIS

The acoustic markers HNR and segmental SDR (SDRSEG) are
used as predictor variables to predict the degree of perceived
hoarseness. The HNR acoustic cue summarizes directly the amount
of dysperiodicities within an utterance. For a given utterance, the
analysis interval is divided into K frames and the HNR is computed
as the average of the HNR, (i=1,..., K) of the K frames:

K
1
HNR = EZI:HNR,- (9-a)
i=

where

M-1 M-1
HNR; =10log| > H?(k) [ Y N*(k) |.i=1,-+K (9-b)
k=0 k=0

with H(k) denoting the magnitude spectrum of the harmonic
component and N(k) the magnitude spectrum of the noise
component and M is the number of frequency points. The
frequency band involved in the computation of the HNR has been
limited to 4 kHz.

The acoustic marker SDRSEG is computed in the temporal domain
as presented in [5]. Both the speech signal x(n) and the
corresponding dysperiodicity e(n) estimated via the generalized
variogram are divided into K frames 5 ms length and the SDRSEG
is computed as:

10 K-1 kL+L—12 l(’L+L—12
SDRSEG = — lo x“(n e“(n 10
05 St [ S| o

k=0 n=kL n=kL

where L denotes the frame length in number of samples.
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The degree of perceived hoarseness is predicted as a weighted sum
of the HNR and SDRSEG acoustic cues:

Hoarseness=a.HNR +b.SDRSEG + ¢ (1n

The constants a, b and ¢ are computed by carrying out multiple
linear regression analysis.
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Figure 1: Decomposition of the log magnitude spectrum of a 200
ms speech frame of sustained [a] into three components via the
EMD algorithm. (a) Log magnitude spectrum. (b) Envelope
component. (¢) Harmonic component. (d) Noise. (e) Sum of the
three components superposed to the estimated envelope.

4. CORPORA AND PERCEPTUAL RATINGS

The corpus comprises concatenations of two Dutch sentences
followed by vowel [a]. Dutch sentences (“Papa en Marloes staan



op het station. Ze wachten op de trein.”) have been produced by 28
normophonic and 223 dysphonic speakers with different degrees of
dysphonia [15]. The motivation behind the structure of the material
is to combine both voice contexts (sustained vowels and
continuous speech) into one concatenated sample upon which
auditory-perceptual ratings and acoustic measures could be
completed. The stimuli have been sampled at 44100 Hz. Five
judges have evaluated the corpus involving the concatenation of
the sentences and vowel [a] perceptually. The five judges are
professional voice therapists with at least five years of experience
in clinical voice quality ratings. Each judge has rated, from 0 to 3,
the item “grade” of the (G)RABS scale. “Grade” represents the
degree of hoarseness or voice abnormality. The five perceptual
scores per stimulus have been averaged. The recordings and
evaluation have been made at the Sint-Jan General Hospital,
Bruges, Belgium.

5. RESULTS AND DISCUSSION

The performance of the bivariate analysis based on the SDRSEG
and HNR acoustic cues is investigated. Based on our previous
investigations, the frame length for HNR estimation has been set to
200 ms.

The empirical mode decomposition-based approach for HNR
estimation has been applied to  the corpus including
concatenations of two Dutch sentences followed by vowel [a]. The
possible minimal and maximal average fundamental frequencies
fOmin and f0,,,x have been fixed to 80 Hz and 250 Hz, respectively.
Table 1 gives Pearson product moment correlations of the HNR as
well as SDRSEG values with average scores of grade for the
different corpora. The null hypothesis R=0 has been rejected
(Rei=0.15, p=0.01). The last column of Table 1 gives the multiple
correlation coefficients obtained by carrying out linear regression
analysis by combining the HNR and SDRSEG as predictor
variables. The null hypothesis R=0 has been rejected (R ;=0.19,
p=0.01, F=169.6). It can be seen that the performance of the HNR
and SDRSEG alone in terms of correlation with the degree of
perceived hoarseness is quite similar. The combination of the HNR
and SDRSEG to predict the degree of perceived hoarseness results
in a stronger correlation.

Table 2 shows the quartiles of the HNR values computed via the
EMD-based approach as well as the quartiles of SDRSEG values
estimated via the generalized variogram-based method. It is seen
that for high level perturbations (low HNR or SDRSEG values),
the EMD-based HNR values tend to be greater than the generalized
variogram-based SDRSEG values, however, for small level
perturbations, the EMD-based HNR provides lower values than
those obtained via the generalized variogram-based SDRSEG as
displayed in Fig. 2.

Table 1. Pearson product moment and multiple correlations of the
HNR and SDRSEG values with average scores of grade for the

corpus comprising concatenations of two Dutch sentences
followed by vowel [a].

HNR SDRSEG | HNR and SDRSEG
| Correlation .70 0.70 0.76

Figure 3 displays the average perceived grade scores versus the
predicted grade scores for the corpus comprising concatenations of
two Dutch sentences followed by vowel [a]. The multiple
correlation coefficient between predicted scores and assigned

perceived grade scores is R=-0.76 indicating the high predictability
of hoarseness scores by means of the HNR and SDRSEG acoustic
cues. Bivariate analysis results in an improved performance in
terms of correlation of predicted scores with scores of perceived
hoarseness over the analysis based on HNR or SDRSEG alone the
(individual) correlation of which is R=0.7. The correlation values
corresponding to the univariate analysis via the HNR or SDRSEG
alone are statistically significantly different from the correlation
corresponding to the bivariate analysis (t-test, t=3.63, p=0.01).

Table 2. Quartiles of EMD-based HNR values and generalized
variogram-based SDRSEG values, in dB, for the corpus
comprising concatenations of two Dutch sentences followed by
vowel [a].

Min 1st Median 3rd Max
quartile quartile
HNR 59 13.2 153 17 284
SDRSEG 5 15.6 17.5 18.9 24
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Figure 2: EMD-based HNR versus generalized variogram-based
SDRSEG for the 251 samples of the corpus.
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Figure 3: Original average perceived grade scores versus predicted
grade scores via the HNR and SDRSEG combination.

6. CONCLUSION

In this presentation, the performance of the bivariate analysis
combining the generalized variogram-based SDRSEG and EMD-
based HNR acoustic cues has been investigated. The proposed
approach has been tested on a corpus comprising 251 normophonic
and dysphonic speakers. Experiments have shows that the bivariate
analysis results in an improved performance in terms of correlation
of predicted grade scores with original perceived grade scores of
hoarseness over the univariate analysis based on the HNR or
SDRSEG acoustic markers. The proposed method does not require
knowledge of the fundamental frequency as an automatic method
has been incorporated to estimate the thresholds required by the
algorithm.
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