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ABSTRACT

Many state-of-the-art techniques for estimating glottal closure

instants (GCIs) use linear prediction residual (LPR) in one

way or another. In this paper, subband analysis of LPR is pro-

posed to estimate the GCIs. A composite signal is derived

as the sum of the envelopes of the subband components of the

LPR signal. Appropriately chosen peaks of the composite sig-

nal are the GCI candidates. The temporal locations of the can-

didates are refined using the LPR to obtain the GCIs, which

are validated against the GCIs obtained from the electroglot-

tograph signal, recorded simultaneously. The robustness is

studied using additive white, babble and vehicle noises for

different signal to noise ratios. The proposed method is eval-

uated using six different databases and compared with three

state-of-the-art LPR based methods. The results show that

the performance of the proposed method is comparable to the

best of the LPR based techniques for clean as well as noisy

speech.

Index Terms— glottal closure instant, GCI, subbands,

composite signal, Hamming filter, HBE, HBEBEST, LPR.

1. INTRODUCTION

The instant at which the resonances or formants of the vo-

cal tract are significantly excited within each glottal cycle

is referred to as the epoch or the glottal closure instant

(GCI). Automated detection of such instants serves a vari-

ety of applications such as pitch and duration modification,

speaking rate modification, pitch normalization, speech cod-

ing/compression, and speaker normalization [1],[2].

GCI estimation techniques can be broadly classified into

three categories: (i) techniques which use the linear pre-

diction residual (LPR), (ii) techniques which estimate GCIs

directly from the speech signal [3] [4], and (iii) techniques

which use the voice source [5] or integrated LPR [6].

Since this paper proposes a method based on LPR, we re-

strict our review to only those techniques that primarily em-

ploy LPR for GCI detection. An early study [7] estimated

epochs as the significant peaks of the Hilbert envelope of the

filtered LPR. Some methods use the center of gravity concept

[8] and Gabor filtering [9] of the Hilbert envelope of the LPR

for pre-processing, in an attempt to improve the performance.

In [10], GCIs are estimated as the positive zero crossings of

the phase slope function of the LPR. This is improved by the

DYPSA [11].

In SEDREAMS [4], the search for GCI is narrowed down

to a short interval starting at the minimum of a windowed

mean based signal, and then picking local maxima from the

LPR within the interval. This algorithm requires a priori aver-

age pitch period information for assigning the window length.

In [12], an evaluation of five state-of-the-art GCI detection al-

gorithms is presented using six different databases.

GCI estimation from a limited bandwidth or wavelet

decomposition of the speech signal have been reported in

[13],[14],[15]. In an earlier study, [16], we reported on the

use of subbands of speech signal for GCI estimation. In an

exploratory study, not reported, we have found that estima-

tion of GCIs from the envelope of LPR gives a temporal

accuracy (to 0.25 ms) of 9.7%, which increases to 29.5% if

lowpass filtered LPR (0 to 2000 Hz) is used. These studies

have led us to investigate the use of the subbands of LPR.

This is motivated by the observation that the influence of

formants is minimized in the LPR, there are a large number

of harmonics in the short-time spectrum of LPR and that only

a few harmonics must suffice to determine the GCIs, since

pitch is a low frequency datum.

The contributions of this paper are: (a) a novel subband

approach to GCI estimation using LPR; and (b) experimen-

tal evidence to show the efficacy of the proposed methods in

the presence of various types of additive noises at different

SNR’s.

2. SUBBAND ANALYSIS OF LPR

Figure 1 shows the block diagram of the proposed approach,

the details of which are given below.

2.1. Pre-processing

Pre-processing consists of two steps: (i) computation of LPR

(ii) bandpass filtering to obtain subband signals. We give

some details of these steps. The pre-emphasized speech sig-

nal for the mth frame, sm[n] may be modeled as sm[n] =
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em[n]∗vm[n], where em[n] is the excitation signal and vm[n]
is the vocal tract impulse response. An estimate of the excita-

tion signal em[n], referred to as LPR and denoted by êm[n], is
obtained by inverse filtering the pre-emphasized speech sig-

nal. LP coefficients are obtained using Hanning windowed

pre-emphasized speech signal using an LP order of fs (sam-

pling frequency) in kHz+2, for frames of length 20 ms and

shift of 5 ms. Only the mid 10 ms segment of LPR is re-

tained. The LPR, ê[n] of the entire signal s[n] is then obtained
by concatenating the LPR, êm[n].

Experimentally we have observed that in order to extract

the GCI information from the subbands of the LPR, each sub-

band signal must cover at least 2-3 harmonics of the pitch

frequency for any speaker. A bandpass filter (BPF) with steep

cut-off results in the temporal spread of the impulse-like com-

ponents in LPR. A narrow bandwidth BPF may miss a har-

monic or enclose a single harmonic and a fraction resulting in

a distorted sinusoid-like signal. Since a Hamming function is

a sufficiently approximate function to a Gaussian function in

discrete time, we use each prototype filter in the filterbank to

be a symmetric, odd length, Hamming filter.

The LPR, ê[n] is passed through a filterbank to obtain the
subband signals. The output of the pth subband filter is given

by:

êp[n] = ê[n] ∗ hp[n] (1)

where hp[n] is the impulse response of the pth filter in the

filterbank given by

hp[n] =







(

sin (2πf2pr)

πr
−

sin (2πf1pr)

πr

)

w[n],

2(f2p − f1p), if r = 0.

where r = n − D/2, w[n] = 0.54 − 0.46 cos
(

2πn
D

)

is

the Hamming window function, D is the order of the filter,

0 ≤ n ≤ D, f1p and f2p are the 3 dB cutoff frequencies.

hp[n] is symmetric aboutD/2.
We choose the center frequencies of the successive filters

to be separated by 200 Hz, each with a bandwidth of around

700 Hz at 3 dB falloff which covers at least 2 harmonics for

any adult speaker. Since voiced speech is generally lowpass,

the relative SNR is poorer at higher frequencies. Hence we

limit the highest center frequency to 1700 Hz. Thus there are

9 subbands in this design.

We hypothesize that the locations of the peaks of the en-

velope of the absolute value of each subband signal, êp[n],
approximately correspond to the candidate GCIs. The enve-

lope of the pth subband signal denoted by Cp[n] is obtained
by piecewise cubic Hermite interpolation [17] between the lo-

cal maxima of |êp[n]|. Cp[n] is referred to as the p
th subband

hereafter.

2.2. Selection of GCI candidates

Figure 2 shows the absolute value of the fifth subband signal,

|ê5[n]| and its envelope, C5[n] for a voiced speech segment.
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Fig. 1: Overview of the subband GCI estimation algorithm.
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Fig. 2: (i) Absolute value of the fifth subband of LPR signal,

|ê5[n]|. (ii) Its envelope, C5[n]).

It is observed that the subband envelopes are quasi-periodic

peaky signals, with peaks near the significant excitation in-

stants. This forms the basis for hypothesizing the peaks of

subband signals as GCI candidates.

Since linear phase FIR filters are used, there is no time

delay between any pair of the T subband signals, and hence

we obtain a composite signal (CS), C[n] as

C[n] =

T
∑

p=1

Cp[n] (2)

Since the different subband signals are quasi-periodic,

predominant peaks are obtained in the CS at the instants of

significant excitation. The CS, C[n] also preserves the tem-

poral characteristics of the excitation instants required for

GCI estimation. The proposed method is henceforth referred

to as the Hamming Bandpass Envelope (HBE) method.

The time instants of the local maxima between succes-

sive zero crossings in the mean subtracted CS are the poten-

tial candidates for GCIs. Let the collection of these candi-

date GCIs be denoted by {gcand}. Since the amplitude of the

CS varies in voiced speech, GCI candidates may be missed if

mean is subtracted over the whole C[n]. Hence, mean sub-

traction is performed framewise with a frame size of 20 ms.

2.3. Refinement and improvement of temporal accuracy

The candidate GCIs ({gcand}) are refined (see Fig. 1) to ob-

tain the set of initial GCI estimates ({giest}) by applying cer-
tain constraints on local periodicity and relative amplitudes.

The local periodicity (p[i]) and relative amplitude (a[i]) are
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obtained as:

p[i] =

1
∑

j=−10

(g[i+ j + 1]− g[i+ j])/12 (3)

a[i] = (C[g[i− 1]] + C[g[i+ 1]])/2 (4)

where g[i] is the present GCI candidate and g[i + j] is the

previously estimated GCI, {giest} (for j < 0), or the future

GCI candidate, {gcand} (for j ≥ 1).

The conditions are defined heuristically by experimenta-

tion and a priori knowledge that GCIs occur quasi-periodically.

The present GCI candidate, g[i] is pruned (confirmed as spuri-

ous detection) in the refinement block, if any of the following

conditions is satisfied: (i) C[g[i]] < C[g[i − 1]] and (g[i] −
g[i − 1]) < 2/3(p[i]), (ii) (g[i] − g[i − 1]) < 0.25p[i], (iii)
C[g[i]] < 0.1a[i]. After this pruning step, the remaining GCI

candidates form the set {giest}.

Temporal accuracy of {giest} is improved by using the

full-band LPR signal. It is known that the GCIs are con-

centrated near the significant local maxima (or minima in the

case of polarity reversal) of the LP residual signal. A search

interval 0.15 times the estimated local pitch period centered

around each element of {giest} is considered. The maxima of

the LPR signal within these intervals form the set of the final

estimated GCIs, {gest}.

Figure 3 shows the GCIs estimated using the HBEmethod

from the subband envelopes of the LPR of the clean speech

signal. It can be observed that while the LPR signal is noisy,

peaks of the individual subbands are approximately aligned

with the GCIs and hence by adding them, the peaks are re-

tained in the CS and lie closer to the reference GCIs. Also,

few spurious peaks in the individual subbands are nullified in

the CS due to the averaging. The final estimated GCIs are

obtained within the rectangular search interval as the peaks of

the LPR signal.

3. EXPERIMENTAL DESIGN AND RESULTS

3.1. Databases, noises and ground truth for GCIs

We have used six databases [12], each containing speech and

the corresponding EGG signals. To test the robustness of the

HBE method, we use speech with additive white noise and

real world noises, namely babble and vehicle noise taken from

the Noisex database [18]. The ground truth for GCIs is ob-

tained from the dEGG signal [19]. The intrinsic time delay

between the microphone recording and the EGG signal has

been accounted for. We use the following performance mea-

sures [12] : identification rate (IDR), miss rate (MR), false

alarm rate (FAR), standard deviation of error (SDE) ambigu-

ously referred to as IDA in [12], and accuracy to 0.25 ms

(Acc.25).
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(a) A segment of clean speech signal and its LPR
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(b) Hamming Bandpass Envelope (HBE) method applied on clean speech

Fig. 3: GCI estimation from a segment of clean voiced

speech from SLT database using HBE method. (b)(i) solid

curves are the first five subbands; dashed curves are the next

four subbands. (ii) thick solid curve is C[n]; circle markers

denote the spurious detections; starred markers denote the

{giest}; dashed rectangles denote the search interval around

{giest}; diamond markers denote the {gest}; thin solid curve

is the differentiated electroglottograph (dEGG) signal; square

markers denote the reference GCIs from the dEGG signal.

3.2. Analysis of individual subbands for GCI estimation

Table 1 lists the performance of GCI estimation from individ-

ual subband envelopes (HBE 1-9) as well as the composite

signal (HBE) on the APLAWD database.

Table 1: Comparison of GCI estimation performance using

individual subbands, HBE and HBEBEST on clean speech

from APLAWD database.

Method IDR (%) MR (%) FAR (%) Acc.25 (%)

HBE 1 81.40 18.34 0.26 34.79

HBE 2 92.69 6.28 1.02 27.19

HBE 3 94.02 4.93 1.04 29.43

HBE 4 92.94 5.60 1.46 63.86

HBE 5 91.95 6.45 1.60 70.71

HBE 6 92.11 6.38 1.51 74.85

HBE 7 91.27 7.12 1.61 75.08

HBE 8 90.36 7.98 1.66 76.13

HBE 9 89.80 8.47 1.73 75.07

HBE 93.10 6.29 0.60 81.45

HBEBEST 98.85 0.56 0.59 89.20
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Table 2: Performance comparison of GCI estimation techniques on clean speech for six different databases with respect to IDR,

MR, FAR, Acc.25 in % and SDE in ms. (bold entries show the best performing method)

Database Method IDR MR FAR SDE Acc.25

HE 97.04 1.93 1.03 0.58 46.24

BDL DYPSA 95.54 2.12 2.34 0.42 83.74

SEDREAMS 98.08 0.77 1.15 0.31 89.35

HBE 99.02 0.55 0.43 0.45 87.83

HE 93.01 3.94 3.05 0.90 38.66

JMK DYPSA 98.26 0.88 0.86 0.46 77.26

SEDREAMS 99.29 0.25 0.46 0.42 80.78

HBE 98.09 0.83 1.09 0.71 77.93

HE 96.16 2.83 1.01 0.56 52.46

SLT DYPSA 97.18 1.41 1.41 0.44 72.17

SEDREAMS 99.15 0.12 0.73 0.30 81.35

HBE 98.98 0.39 0.63 0.38 75.51

Database Method IDR MR FAR SDE Acc.25

HE 92.08 2.55 5.37 0.78 38.67

RAB DYPSA 82.33 1.87 15.80 0.46 86.76

SEDREAMS 98.87 0.63 0.50 0.37 91.26

HBE 97.54 0.68 1.78 0.86 91.98

HE 94.73 1.75 3.52 0.56 65.81

KED DYPSA 97.24 1.56 1.20 0.34 89.46

SEDREAMS 98.65 0.67 0.68 0.33 94.65

HBE 99.51 0.36 0.13 0.33 96.20

HE 91.74 5.64 2.62 0.73 54.20

APLAWD DYPSA 96.12 2.24 1.64 0.59 77.82

SEDREAMS 98.67 0.82 0.51 0.45 85.15

HBE 93.10 6.29 0.60 0.59 81.45

Table 3: Evaluation of HBE method on the combined databases with additive noises at different SNRs

Clean White noise Babble noise Vehicle noise

SNR (dB) -5 dB 0 dB 5 dB 10 dB -5 dB 0 dB 5 dB 10 dB -5 dB 0 dB 5 dB 10 dB

IDR (%) 98.05 86.64 90.50 93.07 94.94 78.99 84.97 89.87 93.12 88.69 92.57 95.10 96.61

MR (%) 1.26 7.92 5.46 3.93 2.80 12.68 8.65 5.53 3.59 6.91 4.31 2.80 1.94

FAR (%) 0.69 5.44 4.04 3.01 2.26 8.34 6.39 4.60 3.29 4.39 3.12 2.10 1.45

SDE (ms) 0.53 1.28 1.11 0.96 0.84 1.50 1.27 1.07 0.91 1.07 0.89 0.75 0.65

Acc.25 (%) 81.90 30.55 40.32 50.50 59.81 34.14 46.10 56.49 64.90 62.95 70.63 75.76 78.82

The CS HBE is better in terms of IDR, MR and FAR than

most individual subbands, while Acc.25 of CS HBE is clearly

better than all individual subband envelopes. IDR for all the

individual subbands is above 89% except for HBE 1, proving

the claim that significant GCI information is present in all the

subbands.

It is possible that dynamically selecting the optimal sub-

band component for each frame may give better accuracy for

GCIs than the summed subband components. So, to arrive at

the best possible (ideal) performance by dynamically select-

ing the optimal subband, we pick that subband whose esti-

mate of GCI is nearest to the GCI reference obtained from the

EGG signal. This approach is named as HBEBEST. Although

HBEBEST is as yet to be practically realized, it denotes the

ideal result obtainable using the proposed approach. Table 1

lists the results for HBEBEST for APLAWD database, which

clearly indicates the potential of the proposed subband ap-

proach.

3.3. Performance comparison

The performance of the HBE method is compared with three

LPR based methods, Hilbert envelope (HE) [7], DYPSA [11]

and SEDREAMS [4] on six databases . The results for HE,

DYPSA and SEDREAMS have been taken from [12].

Table 2 indicates that for IDR and Acc.25, the perfor-

mance of HBE is almost comparable to SEDREAMS and bet-

ter than HE and DYPSA for all the databases. We have ob-

served that subband envelopes centered in the high frequency

region contribute to better Acc.25 of HBE, and the averag-

ing of subband envelopes helps in reducing the FAR. The re-

sults in Table 2 reflect the same for all the databases. Our

method consistently gives accuracy of more than 75% for all

the databases.

Table 3 shows the performance of our method on clean

and noisy speech with white, babble and vehicle noise aver-

aged over all databases for global SNR ranging from -5 to 10

dB in steps of 5 dB. It may be noted that the overall perfor-

mance of HBE method decreases compared to the results on

clean speech in Table 2. However, it is observed that the IDR,

MR and FAR do not drastically degrade with noisy conditions

due to the averaging of subband envelopes, which smoothens

noise in any subband envelope. The Acc.25 degrades in most

of the noisy cases. It is seen that the performance of the HBE

method depends on the type of noise. In the case of white and

babble noise, Acc.25 decreases by around 10% for a decrease

in SNR by 5 dB, and does not degrade much in the case of

vehicle noise. The variation in IDR with SNR is similar for

white and vehicle noise.

4. CONCLUSION AND FUTUREWORK

We have shown that significant GCI information exists in each

subband of speech up to 2000 Hz, and a minimum of 89%

IDR (for subbands other than lowpass ) can be obtained for

clean speech using the HBE method. We have assumed that

the pitch period does not change very rapidly while deriving

constraints for the refinement algorithm, and the polarity of

speech utterances are positive. Dynamic selection of the best

subband using some additional knowledge may achieve ro-

bust GCI estimation closer to the HBEBEST. As an enhance-

ment to this approach, different filterbanks may be explored

with varying bandwidths and filter characteristics. Also, we

will explore the effect of tuning the centre frequencies of the

subband filters close to the formant frequencies of the speech

signal.
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