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ABSTRACT

The current state of the art in judging pathological speech
intelligibility is subjective assessment performed by trained
speech pathologists (SLP). These tests, however, are incon-
sistent, costly and, oftentimes suffer from poor intra- and
inter-judge reliability. As such, consistent, reliable, and
perceptually-relevant objective evaluations of pathological
speech are critical. Here, we propose a data-driven approach
to this problem. We propose new cost functions for exam-
ining data from a series of experiments, whereby we ask
certified SLPs to rate pathological speech along the percep-
tual dimensions that contribute to decreased intelligibility.
We consider qualitative feedback from SLPs in the form of
comparisons similar to statements “Is Speaker A’s rhythm
more similar to Speaker B or Speaker C?” Data of this form
is common in behavioral research, but is different from the
traditional data structures expected in supervised (data ma-
trix + class labels) or unsupervised (data matrix) machine
learning. The proposed method identifies relevant acoustic
features that correlate with the ordinal data collected dur-
ing the experiment. Using these features, we show that we
are able to develop objective measures of the speech signal
degradation that correlate well with SLP responses.

1. INTRODUCTION

The assessment of speech intelligibility is the cornerstone of
clinical practice in speech-language pathology, as it indexes
a patient’s communicative handicap. However, clinical as-
sessments are predominantly conducted through subjective
tests performed by trained speech-language pathologists (e.g.
making subjective estimations of the amount of speech that
can be understood, number of words correctly understood in
a standard test battery, etc.). Subjective tests, however, can
be inconsistent, costly and, oftentimes, not repeatable. In
particular, repeated exposure to the same subject over time
can influence the ratings [1, 2, 3, 4]. As such, there is an in-
herent ambiguity about whether the patient’s intelligibility is
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improving or whether the listener has adapted their listening
strategy so that it better matches the patient’s speaking style.

To overcome these problems, there has been an expressed
desire to develop efficient, objective, and reliable measures
that can be added to the clinical repertoire. Here, we propose
a data-driven approach to this problem. We propose a frame-
work to process collected data from SLPs in order to identify
specific features that are strong correlates to the SLPs ratings.
We consider qualitative feedback from SLPs in the form of
comparisons similar to statements like: ”Speaker A sounds
more like speaker B than speaker C.” An alternative to this
paradigm is to ask listeners to rate the speakers along a scale
(e.g. typical to abnormal). Research suggests that quantitative
feedback of this form can be unreliable; as a result, compara-
tive input that doesn’t require ratings along an absolute scale
is oftentimes preferred [5] [6] [7] [8]. Mathematically, these
statements can be expressed as ordinal constraints. If we rep-
resent each speech signal from speakers A, B, and C by the
vectors xA,xB , and xC (by extracting a set of features) , then
feedback from these experiments can be modeled as inequal-
ities of the form d(xA,xB) < d(xA,xC), where d(∗, ∗) de-
notes some distance measure. Data of this form are common
in behavioral research, but are different from the traditional
data structures expected in supervised (data matrix + class la-
bels) or unsupervised (data matrix) machine learning. Here,
we propose an algorithm for learning from data of this form.
The results show that the algorithm is able to identify relevant
dimensions of the speech signal that preserve the direction of
the dissimilarities. Using these features, we successfully de-
sign algorithms for predicting the rating of certified speech
language pathologists along different perceptual dimensions.

2. RELATION TO PRIOR WORK

Existing work on analyzing pathological speech has been
limited to automated assessment of the intelligibility of the
signal. A number of approaches rely on estimating subjec-
tive intelligibility through the use of pre-trained automatic
speech recognition (ASR) algorithms [9]. These algorithms
are trained on healthy speech and the error rate on patholog-
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ical speech serves as a proxy for estimating the intelligibility
decrement. Research in blind algorithms for intelligibility
assessment has been more limited. In telecommunications,
the ITU-P.563 standard has been shown to correlate well with
speech quality, however this is not optimized for patholog-
ical speech and, in fact, it aims to measure speech quality,
not intelligibility [10]. In [11], [12] and [13], the authors
attempt to estimate dysarthric speech intelligibility using a
set of selected acoustic features. Although the algorithms
have shown some success in a narrow context, the feature sets
used in these papers do not make use of long-term rhythm
disturbances in the signal, common in the dysarthrias.

In contrast to these methods, here the goal is not to auto-
mate intelligibility/quality assessment. Rather, using a newly
developed feature selection method, we aim to isolate spe-
cific acoustic cues that correlate with the way that SLPs judge
pathological speech similarity. Using these features, we aim
to develop listening models capable of evaluating speech
along different perceptual dimensions.

In the machine learning literature, significant work has
been done on ranking algorithms - an overview of the exist-
ing ranking literature can be found in [14]. Although related
to ranking, the tools proposed here deal with relative distances
between points in the set (e.g. d(xA,xB) < d(xA,xC) not
xA < xB). Often the goal in the ranking literature is to learn
a mapping from a vector (features) into a real number that
represents the rank of that object from among a set. Here, the
goal is to perform feature selection using relative dissimilari-
ties between points.

3. LEARNING WITH SIMILARITY LABELS

The goal of our research here is to identify acoustic features
that correlate well to the responses collected from certified
speech language pathologists asked to identify perceptual
similarity between pathological speech signals. In this sec-
tion, we describe a set of candidate features extracted from
each speech signal, we develop the cost function, identify an
appropriate distance measure, and develop a framework for
solving the cost function.

3.1. Feature Description

EMS - The envelope modulation spectrum (EMS) is a repre-
sentation of the slow amplitude modulations in a signal and
the distribution of energy in the amplitude fluctuations across
designated frequencies, collapsed over time [15]. It has been
shown to be a useful indicator of atypical rhythm patterns in
pathological speech [15]. The speech segment, x(t), is first
filtered into 7 octave bands with center frequencies of 125,
250, 500, 1000, 2000, 4000, and 8000 Hz. Let hi(t) denote
the filter associated with the ith octave. The filtered signal
xi(t) is then denoted by,

xi(t) = hi(t) ∗ x(t). (1)

The envelope in the ith octave, denoted by envi(t), is ex-
tracted by:

envi(t) = hLPF(t) ∗ H {x(t)} (2)

where,H{·} denotes the Hilbert transform and hLPF(t) is the
impulse response of a 20 Hz low-pass filter. Once the am-
plitude envelope of the signal is obtained, the low-frequency
variation in the amplitude levels of the signal can be exam-
ined. Fourier analysis is used to quantify the temporal regu-
larities of the signal. With this, six EMS metrics are computed
from the resulting envelope spectrum for each of the 7 octave
bands, xi(t), and the full signal, x(t): 1) peak frequency; 2)
peak amplitude; 3) energy in the spectrum from 3-6 Hz; 4)
energy in spectrum from 0-4 Hz; 5) energy in spectrum from
4-10 Hz; and 6) energy ratio between 0-4 Hz band and 4-10
Hz band. This results in a 48-dimensional feature vector.

LTAS - The long-term average spectrum (LTAS) features cap-
ture atypical average spectral information in the signal [16].
Nasality, breathiness, and atypical loudness variation, all of
which are common causes of intelligibility deficits in patho-
logical speech, present themselves as atypical distributions of
energy across the spectrum; LTAS attempts to measure these
cues in each octave. For each of the 7 octave bands, xi(t), and
the original signal, x(t), the LTAS features set consists of the:
1) average normalized RMS energy; 2) RMS energy standard
deviation; 3) RMS energy range; and 4) pairwise variability
of RMS energy between ensuing 20 ms frames. This results
in a 28-dimensional feature vector.

P.563 - The ITU-T P.563 standard for blind speech quality
assessment [10] is designed to measure speech quality using
a parameter set that measures atypical and unnatural voice
and articulatory quality. There are five major classes of fea-
tures deemed appropriate for our purposes: 1) basic speech
descriptors, such as pitch and loudness information; 2) vocal
tract analysis, including statistics derived from estimates of
vocal tract area based on the cascaded tube model; 3) speech
statistics, which calculate the skewness and kurtosis of the
cepstral and linear prediction coefficients (LPC); 4) static
SNR, measurements of signal-to-noise ratio, estimates of
background noise, and estimates of spectral clarity based on
a harmonic-to-noise ratio; and 5) segmental SNR, or dynamic
noise, where the SNR is calculated on a frame-by-frame
basis. In the standard, a subjective rating (MOS, or Mean
Opinion Score), is obtained through a non-linear combination
of the above features. Here, we make use of the same feature
set for our analysis, by combining all feature sets into one
vector. For a detailed description of each feature, including
the mathematical derivation, please refer to [10, 17].

After extraction of each feature set, we concatenate the
features into a single feature vector, x. This is extracted for
each sentence spoken by each individual in our data set. The
data is described in detail in section 4.
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Fig. 1. An academic example for evaluating the feature selection algorithm. In (a), we show a 2-dimensional data set with the
points arranged on a grid. In (b), we append 3 random dimensions to the data in (a) and plot a 2-dimensions embedding using
MDS. In (c), we identify the two features that preserve the similarities from the data (a).

3.2. Cost Function Derivation

Let us consider a set of collected similarity responses from a
single SLP organized in a set S. For feature selection, we de-
fine a selector vector w that identifies the set of features that
are the strongest correlates to the SLP’s choices. In (3) we
define a notional optimization problem that embeds the SLP
responses in the constraints, with slack variables, sijk to ac-
count for inconsistent responses, and element-wise multipli-
cation between the selector variable and the features (wt◦xi).

minimize
w,sijk

∑
(i,j,k)∈S

sijk + λg(w) (3)

subject to d2ij(w)− d2ik(w)− sijk ≤ 0, ∀(i, j, k) ∈ S
sijk > 0, ∀(i, j, k) ∈ S

where dij(w) = d(w◦xi,w◦xj) and x◦y denotes element-
wise multiplication. The slack variables aim to soften the
hard constraint of d2ik > d2ij by allowing some slack, but
penalizing those cases by adding the slack variables to the
objective function. The regularizer in (3), g(w), gives us
flexibility in how we perform feature selection under this
framework. Possibilities include Tikhonov regularization and
sparsity-inducing norms (L1, L2,1).

3.3. Defining the Distance Metric

We use the weighted Euclidean distance to measure similarity
between points:

dij(W) =
√

(xi − xj)TW(xi − xj) (4)

=

√∑
z

W(z, z)(xi(z)− xj(z))2 (5)

=

√∑
z

W(z, z)yij(z), (6)

where yij = (xi − xj)
2. If we define the selector vector,w,

in (3) as the diagonal of our weight matrix, W, then we can
write the euclidean distance constraint in vector form as:

dij(w) =
√

wTyij (7)

Although here we derive a distance constraint based on
Euclidean distance, other distance measures can be consid-
ered.

3.4. Solving the Cost Function

Combining the distance metric in (7) with the cost function
formulation in (3) and using the sparsity-inducing L1 norm,
we obtain the following complete optimization problem:

minimize
w,sijk

∑
(i,j,k)∈S

sijk + λ||w||1 (8)

subject to wTyij −wTyik − sijk ≤ 0, ∀(i, j, k) ∈ S
sijk > 0, ∀(i, j, k) ∈ S

The cost function consists of two terms: the L1 constraint
and term that depends on the slack variables. The L1 con-
straint ensures that the optimal selector vector, w, is sparse;
the slack variable term serves to penalizes the use of slack
variables and ensures that the constraints are preserved. The
constraint set aims to preserve the order of the similarities
and enforces a positivity constraint on sijk. The optimization
problem in (8) is convex. In fact, by replacing the L1 con-
straint with a set of linear constraints, it can be cast as a linear
program [18]. Here, we make use of the CVX package to
solve for the optimal selector vector and slack variables [19],
[20].

4. RESULTS

We evaluate the algorithm on the following two examples.

917



0.5!
0.55!

0.6!
0.65!

0.7!
0.75!

0.8!
0.85!

0.9!
0.95!

1!

Severity! Nasality! Vocal Quality! Articulatory 
Precision!

Prosody!

SLP1!
SLP2!
SLP3!
SLP4!
SLP5!
Algorithm!

Fig. 2. A comparison of the correlation in responses from SLPs with those generated by the algorithm.

An Academic Example: In Fig. 1 (a), we generate a set of
exemplars neatly organized in a two-dimensional square grid.
Next, we embed the 2-D data into 5 dimensions by appending
3 random features to each exemplars. The value of each fea-
ture is drawn fromN (0, 1). This 5-D data set is embedded in
two dimensions using multi-dimensional scaling (MDS). This
is shown in Fig. 1 (b). In this example, the goal is to iden-
tify which of the five features preserve the correct ordering of
the exemplars on the grid. We generate a set of 200 random
dissimilarities from Fig. 1 (a) to use in the proposed algo-
rithm. We solve the L1-constrained optimization problem in
(xxx) and we identify the feature selector vector w that best
preserves those dissimilarities. The algorithm correctly iden-
tifies 2 non-zero elements in w that correspond to the first 2
dimensions of the 5-dimensional feature vector. Using only
the non-zero values of w, we generate a 2-D MDS embed-
ding based on a weighted Euclidean distance measure. This
is shown in Fig. 1 (c). As is obvious from the figure, the
algorithm correctly identifies the structure of the original em-
bedding using only the similarities. As expected, there is a
difference in embedding scale since only similarities are used
and not absolute distances.
Pathological Speech Evaluation: For this evaluation we use
data collected at the Motor Speech Disorders Lab at ASU.
This data consists of speech samples, split at the sentence
level, from over 100 patients (5 - 10 minutes of speech per
individual), presenting with diverse speech degradation pat-
terns of varying severity. We select a representative sample of
33 individuals from this database. Six certified SLPs blinded
to speakers’ medical and dysarthria subtype diagnoses par-
ticipated. The task was to evaluate the 33 dysarthric speak-
ers along 5 perceptual dimensions: Severity, Nasality, Vo-
cal Quality, Articulatory Precision, and Prosody. In partic-
ular, the listeners were instructed to place a marker along a
scale (ranging from normal to severely abnormal) that corre-
sponded to their assessment of the speaker. In order to evalu-
ate the developed algorithm, we convert the scaled responses
to similarities by converting distances between responses to
similarity labels (similar to what was done in the academic ex-

ample). The purpose of doing this was to evaluate the ability
of the proposed algorithm to reliably select relevant features
using only similarity input.

We consider a single SLP from the set of six. For this in-
dividual, we identify a subset of features from the candidate
set described in section 3.1 that best preserves the similarities
along each perceptual dimension. Using this selected feature
set, we learn a regression model that predicts one rating for
each of the five perceptual dimensions - this can be thought
of as a computational listening model for the SLP we ana-
lyzed. The algorithms are trained using part of the collected
data and evaluated on the remaining set (with the same speak-
ers, but different phrases and different raters). In Fig. 2, we
show the correlation of the remaining five SLP ratings and
the algorithm ratings to each other on the test set. The results
suggest that the algorithm predicts reasonable ratings for the
listeners with an average correlation coefficient of 0.7 to the
other SLPs (compared to an average correlation coefficient of
0.8 for the SLP ratings compared to each other). This is a
confirmation that the correct features were selected using the
proposed approach.

5. CONCLUSION

In this work we propose a new method for learning from data
with similarity labels of the form “A is more like B than C.”
The algorithm is assessed on a problem of identifying rele-
vant acoustic features that correspond to ratings made by cer-
tified speech language pathologists on pathological speech.
We show that, using the features selected by this algorithm,
we are able to develop predictive models that reliably evalu-
ate pathological speech. An obvious next step in this analysis
is to extend this beyond models of single SLP to models for
aggregate SLP responses - this can be done by solving the cost
function in (8) with new group sparsity regularizers (e.g. the
L21 norm). In addition, considering different distance func-
tions (perhaps weighted by a denoising vector) in the analysis
could yield new optimization algorithms that may be more
robust for noisy speech.
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