
ROBUST AND EFFICIENT ENVIRONMENT DETECTION FOR ADAPTIVE SPEECH
ENHANCEMENT IN COCHLEAR IMPLANTS

Oldooz Hazrati?, Seyed Omid Sadjadi, and John H.L. Hansen

Center for Robust Speech Systems (CRSS),
The University of Texas at Dallas, Richardson, TX 75080-3021, USA

{hazrati, sadjadi, john.hansen}@utdallas.edu

ABSTRACT
Cochlear implant (CI) recipients require alternative signal process-
ing for speech enhancement, since the quantities needed for intel-
ligibility and quality improvement differ significantly when direct
stimulation of the basilar membrane is employed for CIs. Here, a
robust feature vector is proposed for environment classification in
CI devices. The feature vector is directly computed from the out-
put of the advanced combination encoder (ACE), which is a sound
coding strategy commonly used in CIs. Performance of the pro-
posed feature vector is evaluated in the context of environment clas-
sification tasks under anechoic quiet, noisy, reverberant, and noisy
reverberant conditions. Speech material taken from the IEEE cor-
pus are used to simulate different environmental acoustic conditions
with: 1) three measured room impulse responses (RIR) with distinct
reverberation times (T60) for generating reverberant environments,
and 2) car, train, white Gaussian, multi-talker babble, and speech-
shaped noise (SSN) samples for creating noisy conditions at 4 dif-
ferent signal-to-noise ratio (SNR) levels. We investigate 3 differ-
ent classifiers for environment detection, namely Gaussian mixture
models (GMM), support vector machines (SVM), and neural net-
works (NN). Experimental results illustrate the effectiveness of the
proposed features for environment classification.

Index Terms— Advanced combination encoder, cochlear im-
plants, environment detection, noise, reverberation

1. INTRODUCTION

Although cochlear implant (CI) recipients are able to identify speech
in anechoic quiet environments to a large extent, their speech iden-
tification performance drops significantly in the presence of noise
and/or reverberation [1, 2]. Here, speech enhancement strategies that
can alleviate the impact of noise and/or reverberation are of great in-
terest. Several single- and multi-microphone techniques have been
proposed towards suppressing adverse effects of noise and reverber-
ation on speech which have resulted in substantial speech intelligi-
bility gains for CI users [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

Despite the effectiveness of speech enhancement strategies for
improving quality and/or intelligibility of noisy, reverberant, and
noisy reverberant speech for CI users, mitigating the negative ef-
fects of each of the maskers requires environment-specific treatment
that is dependent on the nature of distortion (e.g., convolutive vs.
additive, narrowband vs. wideband, or linear vs. non-linear inter-
ferences). Therefore, environment detection becomes an essential
element to adaptively provide proper speech enhancement strategies
for different listening environments.

For general speech processing, the domain of “Environmental
Sniffing” has merged as a means of extracting knowledge concern-

ing noise or the environment for the subsequent speech processing
solutions [16]. In addition, knowing the type of noise/distortion can
be employed to adapt the necessary noise frame update rate needed
to achieve a required level performance [17].

Although a few noise and/or reverberation suppression tech-
niques in CIs have been proposed and evaluated [1, 3, 4, 5, 7, 8, 9],
the literature on noisy and/or reverberant environment detection is
sparse, where most studies have focused on either room impulse
response (RIR) or T60 estimation for a given environment (e.g.
see [18, 19]). Only in a recent study [20], channel-specific mod-
els were used to detect reverberation in CI stimuli. However, the
goal in [20] was to classify reverberant, noisy, and anechoic quiet
environments based on two features extracted at the output of 22
frequency bands before the maxima selection in advanced combina-
tion encoder (ACE) [21]. The strategy proposed in [20] resulted in
a reverberation signal detection score of 100% for T60 = 1.2 s, and
86% for a shorter reverberation time of T60 = 0.5 s. The technique
was only evaluated using simulated RIRs for reverberation and two
noise types (speech-shaped and white Gaussian noise). No attempt
was made to include actual or simulated noisy reverberant environ-
ments, where both noise and reverberation exist, in classification
experiments of all four types, neither did they consider other real
noise types.

In this study, following the work presented in [20], three fea-
tures are proposed for the environment classification task. These fea-
tures, which are extracted from the simplified output of the maxima-
selection stage in the ACE, are based on the average inter-stimuli
intervals (ISI), stimulation length (SL), and stimulation energy (SE)
of each frequency channel in the CI device. Gaussian mixture model
(GMM), support vector machine (SVM), and neural network (NN)
classifiers are trained based on these features computed in different
types of acoustic environments (anechoic quiet, noisy, reverberant,
and noisy reverberant). To evaluate the effectiveness of the proposed
features for environment detection, speech material extracted from
the IEEE corpus are used to simulate various acoustic conditions
along with three RIRs with different reverberation times (T60 = 0.3,
0.6, and 0.8 s) [22], five noise types, namely white Gaussian noise
(WGN), speech-shaped noise (SSN), multi-talker babble, car, and
train, at four signal-to-noise ratio levels (SNR = -5, 0, 5, 10 dB).

2. ENVIRONMENT DETECTION

2.1. Mathematical environment model

In this study, four general environments are considered for classifi-
cation:

a) Anechoic quiet, where neither additive noise, nor reverbera-
tion is present and ACE strategy performs well and there is no need
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Fig. 1. Block diagram of the proposed feature extraction strategy.
Here, k and c denote frequency channel indices (k = 1, . . . , 128
and c = 1, . . . , 22), and m denotes time-frame index.

for speech enhancement.
b) Reverberant, where the received speech signal is a delayed

sum of the direct sound and its reflections in the acoustic environ-
ment. Reverberant speech can be modeled as the convolution of the
RIR with the clean speech signal,

r (n) =

L−1∑
l=0

s(n− l)h(l) = s(n) ∗ h(n), (1)

where r(n) and s(n) are the reverberant and anechoic signals, re-
spectively, and h(n) is the RIR with the length L.

c) Noisy, where the anechoic speech signal is masked with ad-
ditive (stationary or non-stationary) noise,

y (n) = s(n) + d(n), (2)

where d(n) and y(n) are additive noise and noisy signals, respec-
tively.

d) Noisy reverberant, in which noise (stationary or non-stationary)
is added to the reverberant speech signal,

x (n) = (s(n) ∗ h(n)) + d(n), (3)

where x(n) is the noisy reverberant signal. It is a common practice
in engineering literature to add noise to the reverberant signal when
studying their combined effects [6].

2.2. Feature extraction

A block diagram illustrating different stages of the ACE strategy is
shown in Fig.1. In the ACE routine, the signal is first pre-emphasized
and short-time windowed. Next, a 128-point fast Fourier transform
(FFT) of each short-time frame is computed and is followed by a
magnitude squaring stage. The 128-point spectrum of the signal is
weighted and summed across 22 frequency bands to generate a 22
channel signal spectrum. From the 22 channel outputs, N (which is
typically 8,10, or 12) maxima are selected as the stimuli and pre-
sented to the CI user. Here, three different features are extracted
from the output of the N-maxima to be used for environment clas-
sification. The first feature is the stimuli energy, averaged over all
frames at each frequency bin:

SE =

M∑
m=1

se(m)/M, (4)

where m and M are the frame index and total number of frames,
respectively, and se denotes the short-time energy of each frame.

The second feature is the average inter-stimulation interval (ISI),
which is the average time during which a frequency channel is not
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Fig. 2. Normalized distributions of histograms of averaged SE, ISI,
and SL features for IEEE database (720 sentences) in anechoic quiet,
reverberant (T60 = 0.6 s), noisy (SNR= -5 dB, babble noise), and
noisy reverberant (T60 = 0.6 s and SNR = -5 dB, babble noise)

selected by the ACE (duration of a channel being “off” between two
“on”s) which is defined as,

ISI =

J∑
j=1

isi(j)/J, (5)

where j and J denote the index of inter-stimulation interval and total
number of short-time ISIs in a frequency bin. The short-time ISI
is denoted by isi.

The third feature is the average stimulation length (SL), or the
average time duration that a channel is selected by the ACE (duration
of a channel being “on” between two “off”s) which is defined as,

SL =

K∑
k=1

sl(k)/K, (6)

where k and K are stimulation-length index and total number of con-
tinuous stimulations in a frequency channel, respectively, and short-
term stimulation length is denoted as sl.

The final feature vector for environment classification is formed
by concatenating the three features described above. Note that all
three features are computed at the output of ACE which is already
implemented in CI devices. Hence, no additional computational
load is introduced for extracting features, making them attractive for
real-time processing in CI platforms. Log-normal distributions are
fit to the histograms of the features and are shown in Fig. 2. The
normalized distributions illustrate the discrimination power of the
features for environment classification in: anechoic quiet, reverber-
ant, noisy, and noisy reverberant conditions. All sentences from the
IEEE database [23] are used for generating the histograms. As can
be seen from the histogram for the averaged SE feature (left), the
averaged energy concentration of the maxima channels selected by
the ACE increases from anechoic quiet (solid red) condition to the
noisy reverberant condition (dot-dashed brown). This is expected
as reverberation smears the speech energy over time, hence the en-
ergy distribution for reverberant speech has a higher variance. In
the additive noise condition, as noise energy adds to the speech en-
ergy masking of weaker consonants, the energy variances become
smaller and average energy increases. In the noisy reverberant con-
dition, the energy distribution has a structure between reverberant
alone and noise alone distributions, with the energy concentration at
a larger value due to the combined effects of additive noise and con-
volutive reverberation. A Similar trend is observed for averaged ISI
and SE features, where a wider distribution is seen for reverberant-
alone compared to other conditions. As noise and reverberation fill
in the gaps of the speech spectrum in a complementary fashion, the
averaged ISI is concentrated around a smaller value compared to the
reverberant condition. However, the similarity between noise-alone
and noisy reverberant ISI and SL distributions is due to averaging
over different frequency bins.
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2.3. Classifier training

2.3.1. Support vector machines (SVM)

A SVM is a discriminative binary classifier that divides a d-
dimensional real space into two half spaces with the largest margin
by constructing an optimal separating hyperplane (OSH) [24]. Bi-
nary classification is the task of classifying the members of a given
observation sequence into two groups on the basis of whether they
have the same property or not. A separating hyperplane (also called
discriminant function), divides the dataset such that all points with
the same class label are on the same side of the hyperplane.

A linear decision function works well when the decision bound-
ary between the two classes is linear. However, the training set is not
always linearly separable. To achieve better generalization perfor-
mance, the input data can be first mapped into a high-dimensional
feature space, where the decision boundary is linear, using kernel
functions such as a polynomial or Gaussian. The OSH is then con-
structed in the feature space. We employ a one-versus-rest strategy
to perform multi-class classification with SVMs.

2.3.2. Gaussian mixture models (GMM)

A GMM is a parametric probability density function described as
a weighted sum of Gaussian component densities. It is usually ef-
ficient in representing a large class of sample distributions, and is
represented by three hyper-parameters: i) mean vectors, ii) covari-
ance matrices, and iii) mixture weights of all its component densities.
These hyper-parameters are estimated from training data using an it-
erative Expectation-Maximization (EM) algorithm [25]. We train a
GMM per environment class and use a maximum likelihood crite-
rion for classification.

2.3.3. Neural networks (NN)

NN classifiers are artificial network with processing units (neurons)
that operate in parallel [26]. NNs are developed to mimic the func-
tion of neuro biological networks. NNs learn complex mappings
between inputs and output and are specifically useful when the un-
derlying statistics of the classification task are not properly under-
stood.

In a multi-layer network, the back-propagation algorithm learns
the neuron weights using gradient descend in order to minimize the
squared error between the estimated output and the target outputs
of the network. We train a three-layer feed-forward structure using
sigmoid activation functions for the input and hidden layer, and a
linear activation function for the output layer.

3. EXPERIMENTS

Performance of the proposed feature vector, which is formed by con-
catenating the three features described in Section 2.2, is evaluated in
the context of environment detection tasks using GMM, SVM, and
NN classifiers. In this study, we consider four types of environments
for classification: clean, noisy, reverberant, and noisy reverberant,
and report confusion matrices and classification accuracies as per-
formance metrics. In addition, performance of the proposed feature
vector is also assessed in noisy environment classification.

For classification experiments, training and test speech material
are obtained from the IEEE database [23]. The IEEE speech corpus
contains 72 lists of 10 phonetically balanced sentences where each
sentence has 7-12 words produced by a male speaker [27]. For each

classification task, half the corpus (360 sentences) is used for classi-
fier training and the remaining half (360 sentences) is used for tests.
For the environment classification task (classification of 4 types of
environments), 360 training sentences are divided into four groups
of 90 sentences per environment. The other half of the database (360
sentences) are also divided into four 90-sentence groups for subse-
quent tests. For the noise classification task, sixty sentences are used
to train the classifiers for each noise type (SSN, babble, car, train,
WGN). The other 360 IEEE sentences are used for evaluations (di-
vided equally between noise types).

Multi-talker babble, SSN, train, car, and WGN are added to ane-
choic clean speech signals at −5, 0, 5, and 10 SNR levels to generate
the noisy stimuli. Multi-talker babble, train, and car noise samples
are extracted from real noise recordings (using a laptop and a MC391
microphone) sampled at 44 kHz and down-sampled to 16 kHz for
this study. Train and car noise samples are recorded from outside of
a train and a car cruising at a speed of 60 mph, respectively [27].

The reverberant stimuli are generated by convolving the clean
signals with real RIRs recorded in a 10.06 m × 6.65 m × 3.4 m
(length × width × height) room [22]. The reverberation time of the
room is varied from 0.3, 0.6, and 0.8 s by adding absorptive pan-
els to the walls and floor carpeting. The direct-to-reverberant ratios
(DRR) of the RIRs are 1.5, -1.8, and -3.0 corresponding to T60 = 0.3,
0.6, and 0.8 s, respectively. The distance between the single-source
signal and the microphone is 5.5 m, which is beyond the critical
distance. Noisy reverberant stimuli are generated by adding noise
to the reverberant signal for all combinations of 5 noise types, four
SNR levels, and three reverberation times. For the noisy reverberant
stimuli, the reverberant signal served as the target signal in the SNR
computation.

For implementation of the ACE strategy, general CI parameters
such as 800 pulses per second (pps), 22 frequency bins, and 8 max-
ima (out of 22) channels are used.

The SVM classifier is trained with a Gaussian RBF kernel. A
5-fold cross validation is used with the training data to determine
the SVM parameters. As noted earlier, we employ a one-versus-
rest strategy to perform multi-class classification with SVMs. Two,
four, eight, and sixteen-mixture GMMs are trained and tested for
the classification task. However, we only report the results with 4-
mixture GMM classifiers because they performed the best in our ex-
periments. For the NN classifier, a feed-forward multi-layer percep-
tion structure with one hidden layer (with 7, 7, and 1 nodes in the
layers) with sigmoids, and linear activation functions is used (1000
iterations). The weights are initiated with small random values (be-
tween -0.5 and 0.5).

4. RESULTS

The environment classification results obtained with GMM, SVM,
and NN classifiers are shown as confusion matrices in Table 1. Each
row represents a specific environment type, where the diagonal el-
ements present the correct classification score for each condition.
As seen from the table, clean, reverberant, noisy, and noisy rever-
berant environments are accurately classified 97.79%, 97.14%, and
95.13% of time using SVM, GMM, and NN classifiers, respectively.
It is clear that the proposed feature vector can yield high classifi-
cation performance with the four types of clean, reverberant, noisy,
and noisy reverberant environments. This is due to the robustness of
ISI, SL, and SE of the N-maxima channels selected from the ACE
speech coding strategy implemented in many CI devices. For all
three classifiers, the best scores are obtained for the noisy reverber-
ant environment (99.84%, 99.31%, and 98.73% for SVM, GMM,
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Table 1. Environment classification confusion matrices for SVM,
GMM, and NN classifiers.

Clean 96.11 1.19 2.70 0.00
Rev 1.30 97.86 0.64 0.20

Noisy 2.17 0.29 97.33 0.21
Noisy Rev 0.00 0.16 0.00 99.84
(a) Results on SVM classifiers: overall avg. = 97.79%

Clean 94.70 1.66 3.64 0.00
Rev 1.67 97.37 0.85 0.12

Noisy 2.43 0.41 97.16 0.00
Noisy Rev 0.03 0.27 0.40 99.31
(b) Results on GMM classifiers: overall avg. = 97.14%

Clean 92.92 4.17 2.48 0.43
Rev 2.14 95.65 1.65 0.56

Noisy 2.09 2.90 93.23 1.78
Noisy Rev 0.09 0.30 0.88 98.73
(c) Results on NN classifiers: overall avg. = 95.13%

and NN classifiers, respectively).
The environment classification results obtained using the NN

classifier are slightly inferior to those obtained with SVM and GMM
classifiers because of two main reasons. Training NNs requires large
amounts of training data. However, here only 90 sentences with an
average of 3 seconds duration are used for NN training. Moreover,
due to computational complexity as well as limited amount of train-
ing data, the number of hidden layers and nodes are limited which
consequently restricts the effectiveness of NN solution.

Although the main goal of the proposed feature vector is envi-
ronment detection (clean, noisy, reverberant, and noisy reverberant),
in another experiment the robustness of the proposed feature vector
is evaluated in noisy environment classification. In this case, clas-
sifiers are trained only using noisy data with different noise types
(as well as clean data). The results of noisy environment classi-
fication are presented in Table 2. As results suggest in the table,
clean, babble, SSN, car, WGN, and train noisy environments are ac-
curately classified 95.08%, 93.40%, and 82.76% of the time using
SVM, GMM, and NN classifiers, respectively. The results indicate
that ISI, SL, and SE features can not only discriminate among differ-
ent types of distortions introduced to the signal (no distortion, con-
volutive, additive, convolutive+additive), but also can provide useful
information on noise types (stationary and non-stationary) quite ac-
curately.

As seen from Table 2, the best noise classification performance
is obtained for WGN and car noise, and the worst performance is ob-
tained for train noise. Moreover, compared to the four-environment
(clean, reverberant, noisy, and noisy reverberant) detection task, less
training and test data is used for this experiment (60 sentences per
each noise type, approximately 180 s), which results in lower classi-
fication scores, that is especially evident for the results obtained with
the NN classifier.

5. CONCLUSION

This study has proposed a feature vector based on the ACE (used
in cochlear implants (CI)) for environment detection and classifica-

tion in clean, noisy, reverberant, and noisy reverberant conditions.
The feature vector was formed by concatenating the inter-stimulus
interval (ISI), stimulation length (SL), and stimulation energy (SE)
features obtained from the output of the N-maxima selection stage
of the ACE speech coding strategy in CI devices. The performance
of the proposed features in capturing environment-specific charac-
teristics was assessed using GMM, SVM, and NN classifiers trained
and tested on sentences from the IEEE database in anechoic quiet,
moderate to relatively large reverberation times (T60 = 0.3, 0.6, and
0.8s), different noisy conditions (train, SSN, WGN, multi-talker bab-
ble, and car) at four signal-to-noise ratio (SNR) levels (-5, 0, 5, and
10 dB), and sixty noisy reverberant environments (all combinations
of T60s, noise types and SNR levels). All four environments were
classified with an accuracy as high as 97% using SVM and GMM
classifiers, and 95% using NN classifiers. The high accuracy in envi-
ronment classification was due to the efficacy of the proposed feature
vector in capturing characteristics of different environments and con-
sequently training robust classifiers. Environment classification is of
great importance in the field of speech enhancement, especially for
CIs where there exist several speech enhancement algorithms that
function well in specific scenarios (e.g., under additive noise), but
degrade the quality/intelligibility of speech in other environments
(e.g., reverberant or noisy reverberant). Incorporating each speech
enhancement strategy in the environment for which it is designed
for will improve overall performance as well as avoid unnecessary
battery usage and excessive signal processing in the CI devices.
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Table 2. 6-way noise classification confusion matrices for SVM,
GMM, and NN classifiers.

Clean 94.32 0.50 3.69 0.73 0.00 0.76
BABB 3.33 92.02 2.58 0.00 0.00 2.07
SSN 1.57 2.67 95.18 0.00 0.00 0.57
CAR 1.15 0.00 0.00 98.85 0.00 0.00
WGN 0.00 0.00 0.00 0.00 99.82 0.18

TRAIN 4.13 3.19 1.69 0 0.73 90.26
(a) Results on SVM classifiers: overall avg. = 95.08%

Clean 91.68 0.72 3.75 1.29 0.00 2.55
BABB 3.24 87.89 3.09 0.00 0.00 5.78
SSN 1.76 2.95 93.67 0.00 0.00 1.62
CAR 1.01 0.00 0.00 98.72 0.00 0.28
WGN 0.00 0.00 0.00 0.00 98.28 1.72

TRAIN 3.33 2.20 1.45 0.00 2.88 90.14
(b) Results on GMM classifiers: overall avg. = 93.40%

Clean 77.12 15.72 4.47 1.40 0.53 0.75
BABB 4.90 79.42 11.29 1.51 1.00 1.88
SSN 1.29 14.35 80.18 2.73 0.65 0.80
CAR 1.52 0.66 2.44 92.25 2.67 0.46
WGN 0.32 0.17 0.36 1.44 94.90 2.82

TRAIN 2.41 3.82 4.73 4.20 12.15 72.69
(c) Results on NN classifiers: overall avg. = 82.76%
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