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ABSTRACT 

 

The 3D extension of High Efficiency Video Coding 

(HEVC) standard (3D-HEVC) aims at improving coding 

efficiency by introducing new and unique approaches for 

utilizing correlations between the different views of a scene. 

Reported coding efficiency, however, comes at the expense 

of increased computational complexity. For real-time 

applications, reducing the computational complexity of 3D-

HEVC is very important. In this paper, we propose an 

adaptive fast mode assigning method based on a Bayesian 

classifier that reduces 3D-HEVC’s coding complexity by up 

to 51.95%, while maintaining the overall quality and bit-

rate. 

 

Index Terms— 3D HEVC, video compression, low 

complexity compression, Bayesian classifier 

 

1. INTRODUCTION 

 

Multiview video provides more immersive viewing quality 

of experience compared to the traditional 2D video content. 

Each multiview video stream contains several video 

sequences, which are simultaneously captured from the 

same scene. One the major challenges involved in multiview 

video applications is compressing and transmitting the 

resulting very large amount of data. 

The latest multiview video coding standard (MVC) is an 

extension of the H.264/AVC standard [1]. To improve 

multiview video coding efficiency, MVC is equipped with 

several inter-view prediction schemes. While these schemes 

improve coding efficiency, they also increase the overall 

computational complexity. Several studies were conducted 

towards reducing MVC coding complexity for real-time 

applications [2-4]. Researchers in [2] proposed the use of a 

threshold rate distortion (RD) cost for each to-be-encoded 

block so that the MVC encoder does not examine all the 

possible prediction modes. The method presented in [3] 

examines only a limited number of inter and intra prediction 

modes for each block, based on the inter and intra prediction 

modes of the corresponding block in the reference view and 

eight spatial neighboring blocks. To reduce the number of 

examined modes by the encoder, the researchers in [4] 

propose to utilize the depth information in cases where this 

information is available (multiview plus depth (MVD) 

content). 

Recently, the Joint Video Team (JVT) of the ISO/IEC 

MPEG and the ITU-T VCEG have introduced a new 

compression standard, known as the High Efficiency Video 

Coding (HEVC) [5], which achieves significantly higher 

compression (up to 45.54% in terms of bit rate) than the 

H.264/AVC standard [6]. Considering the superior 

performance of HEVC and the market trends towards the 

adoption of a multiview system, the JVT of MPEG and 

VCEG has initiated the development of the 3D extension of 

HEVC (3D-HEVC). Note that while HEVC’s advanced 

coding features, such as the increased number of intra 

modes and more flexible inter prediction, improve coding 

performance, they also result in increased computational 

cost. In the case of 3D-HEVC, the computational 

complexity elevates due to inter-view prediction. Reduction 

of coding complexity is one of the critical issues that need to 

be addressed in the development of the 3D-HEVC codec. To 

this end, in our previous work we proposed an adaptive 

search range adjustment method and an early termination 

mode-search scheme for 3D-HEVC to decrease the coding 

complexity [7].  

In this study, we propose a fast mode decision scheme 

based on a Bayesian classifier to predict the mode of the 

blocks in the dependent view using information of already 

encoded neighboring blocks. This scheme significantly 

speeds up the encoding process by preventing the encoder to 

go through an extensive mode-search process (a 3D-HEVC 

encoder by default checks all the available modes to find the 

mode with the lowest rate distortion cost).  

    The rest of this paper is organized as follows: Section 2 

includes a short overview of the 3D-HEVC emerging 

standard, Section 3 elaborates on our proposed method, 

performance evaluation of our method is presented in 

Section 4, and the conclusion is drawn in Section 5. 

 

2. OUR PROPOSED SCHEME 

 

The basic structure of the 3D-HEVC codec is shown in Fig. 

1[8]. As it can be observed, in 3D-HEVC one of the views is 

selected as the base view (BV) and is HEVC encoded 

independent of the other views. The rest of the views (called 

dependent views (DVs)) are coded utilizing disparity-

compensated prediction (DCP) in addition to the spatial 

prediction and motion-compensated prediction (MCP) as 

used in conventional HEVC. In DCP, the already encoded 

frames of other views in the same time instance are added to 
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the reference list (see arrows in Fig. 1). The main objective 

of our study is to decrease the computational complexity of 

the 3D-HEVC encoder by utilizing the correlation between 

the base view (BV) and the dependent views (DVs). During 

the inter/intra prediction process, 3D-HEVC computes the 

RD cost for all of the available modes (based on the size of 

the to-be-encoded CU). Then, the encoder selects the mode 

that has the lowest RD cost. In our study, we propose a fast 

mode assigning (FMA) technique, which uses the mode 

information of the CUs in BV as well as the mode 

information of the already-encoded neighboring CUs in 

DVs to predict the mode of the to-be-encoded CU in each 

DV. This approach enables the encoder to avoid the 

extensive computational cost involved in the mode search 

process.  

In our method for predicting the inter/intra prediction 

mode of the to-be-encoded CU in a DV, the mode 

information of the neighboring (top left, top, top right, and 

left) CUs that are already coded as well as the mode 

information of the corresponding CU in the BV are used. 

These CUs are called predictor CUs hereafter. Fig. 2 shows 

an example of a current to-be-coded CU in the nth view and 

the predictor CUs, i.e., its four spatial neighbors and its 

corresponding CU in the BV. Note that the neighboring CUs 

in the dependent view are similar to the candidates that 3D-

HEVC chooses for the inter prediction merge mode. 

Our goal here is to approximate a function whose input is 

the mode information of the predictor CUs and its output is 

the predicted mode of the current CU. In other words, we 

would like to estimate the posterior probability of the 

current CU’s mode, given the mode information of the 

predictor CUs. This problem can be modeled as a supervised 

learning problem with training and testing processes. To 

formulate the problem, assume Y is the random variable 

corresponding to the probability of possible modes for the 

current to-be-coded CU in a DV, and X is a random vector 

corresponding to the probabilities of the modes of predictor 

CUs. If there are M different 3D-HEVC inter and intra 

modes, the random variable Y has M different values 

representing the probability of each mode. If there are L 

predictor CUs, then the length of vector X will be equal to L 

and each of its components can take M possible values 

which represent the probability. This results in ML-1 

different possible probability values for the random vector 

X. The term -1 comes from the fact that the probability 

values should sum to one. The probability of each mode of 

the current CU in DV given the probability of the modes of 

the predictor CUs, i.e., the posterior probability P(Y|X), is 

calculated using the Bayes rule as follows: 
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                                                 (1) 

where P(Y) is the prior probability of the mode of the to-be 

encoded CU, P(X|Y) is the class-conditional density, which 

defines the distribution probability of observing a 

combination of modes for predictor CUs given the 

probability of the mode of current CU.  

To find P(Y|X), the learning algorithms needs to estimate 

P(Y) and P(X|Y). The former requires estimating M-1values 

(variable Y can have M different values), and the later 

requires learning of an exponential number of parameters, 

which is an intractable problem [9]. In order to estimate 

P(X|Y),we use the Naive Bayes classifier [9]. The Naive 

Bayes classifier dramatically reduces the complexity of 

estimating P(X|Y) by making a conditional independence 

assumption. This learning algorithm assumes that different 

components of the X vector are independent with respect to 

a given Y. Taking into account the conditional independence 

assumption we have:  
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Therefore, 
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Fig. 2. Current CU and its four spatial neighbors in base 

view and current view. 

 
Fig. 1. The structure of 3D-HEVC [7]. 
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According to the optimal Bayes decision rule [9], the 

mode of the posterior probability distribution (predicted 

mode of the current CU in DV) is the mode, which has the 

largest probability among all the modes. Therefore, for 

classifying a new X, the following formula can be used: 

y� � argmax
"#

��� � $%�∏ ����|� � $%��
��� 		                      (4) 

where ym is the mth possible value of Y. Note that P(X) is the 

normalization factor in (3), thus it has been omitted in 

calculation of ym (i.e., the value of ym is independent of 

P(X)). The value of ym represents the predicted mode for the 

to-be-encoded CU in DV. 

To find the optimal value of ym in (4), we need to have 

P(X|Y) and P(Y). These probabilities need to be computed 

during the training process. A very popular method to 

estimate these probabilities is the Maximum Likelihood 

Estimation (MLE) [9]. A major drawback of MLE is that 

when MLE is used for estimating the probabilities, there are 

some situations in which we have not seen some states 

(modes) in the training set. To resolve this problem, we 

employ Maximum a Posteriori (MAP) estimation [9]. MAP 

estimation incorporates a prior distribution function over 

P(X|Y) and P(Y). In order to use MAP estimation, it is 

required to assign appropriate conjugate prior distribution 

for the parameters. Since the distribution of the posterior 

probability is a Multinomial (Categorical) distribution, in 

our method we use Drichlet distribution as the conjugate 

prior [9]. Thus, the solution to the MAP estimation for P(Y) 

is as follows: 
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		                               (5) 

where αk determines the strength of the prior assumptions 

relative to the observed data, M is equal to the number of 

different values which Y can take, and Nk indicates the 

number of times the modes of the current CU is equal to yk.  

Similarly the MAP estimation for P(X|Y) is as follows: 
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where αlm determines the strength of the prior assumptions 

relative to the observed data, M is equal to the number of 

distinct values which Xl can take, and Nlmk indicates the 

number of times that the mode of the lth predictor is equal to  

xlm, given the mode of the to-be-encoded CU in DV is equal 

to yk. To find the hyper parameters αk and αlm, which 

constitute the initial model, four representative video 

sequences are used in our approach. These video sequences 

are excluded from the video sets used to test our approach.  

In order to improve the efficiency of the initial model and 

also make sure that it works for all possible encoding 

configurations, we fine-tune it by using the first few frames 

of each scene. In our NB-FMA implementation (see Fig. 3), 

the first second of the video (i.e., 25 frames for 25fps 

format) is coded using a conventional 3D-HEVC encoder. 

Note that the number of frames is based on our empirical 

tests. The mode information of these frames  is used for 

fine-tuning the model. During the training/fine-tuning 

process, the BV and DVs are encoded using the original 3D-

HEVC encoder [8]. For each CU in the DV, the information 

about the chosen mode is stored and the probability values 

are updated as the coding process continues. Based on this 

information, the probability of each mode (for a to-be-coded 

CU in DV) given the predictor CUs’ mode is calculated. 

The 3D-HEVC modes (inter and intra modes) are labeled by 

discrete numbers and each mode is considered as a class. 

During the training process, the probability values are 

updated as the coding process continues. In the testing 

process, first the BV is encoded, and then the encoder 

encodes the DVs. Unlike the training process, the encoder 

does not check all of the inter and intra prediction modes. 

Instead, the modes of the predictor CUs are used for 

predicting the mode of the current CU. In this study, the 

three mode candidates with the highest probability among 

all the available modes are chosen, and the encoder 

calculates the RD cost for these three candidates and 

chooses the one with the smallest RD cost. If scene change 

occurs, the training process is repeated to update the 

probabilities of the model.   

3. RESULTS 

 

In our experiment, four test videos from the data set 

provided by MPEG for the 3D Video Coding Call for 

proposals [10] were used (see Table I). Our method was 

implemented in the 3D-HEVC software (HTM-DEV-2.0). 

The performance of our proposed scheme is compared with 

the performance of the proposed complexity reduction 

method proposed in [7]. Note that to have a fair comparison 

the adaptive search range scheme proposed in [7] was not 

used in our implementation. The “baseCfg_2view+depth” 

configuration is used (hierarchal B pictures and GOP length 

8) [11]. By using this configuration, the 3D-HEVC encodes 

two views and their corresponding depths [11]. The QPs 

used for the views and the Depth map (QPV, QPD) are as 

follows: (25, 34), (30, 39), (35, 42) and (40, 45). Fig. 4 

shows the RD curves of four test video sequences (reported 

PSNR values belong to the video content of the DV and not 

Fig. 3. Block diagram of the proposed method. 
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the depth map). Note that the reported bitrate is the bitrate of 

the 3D video stream, which includes the base view plus 

depth map and the dependent view plus depth map.  As it 

can be observed from Fig. 4, our proposed scheme (NB-

FMA) and the complexity reduction scheme proposed in [7] 

barely affect the bitrate of the streams. 
Fig. 4 also illustrates the percentage of mode-search 

complexity reduction for each stream. In our study the 

complexity is computed based on the number of times the 

encoder searches for the best mode [7]. For example, for 

inter prediction, for every search point the complexity 

measure is equal to 1. As can be seen from the complexity 

curves in Fig. 4, our proposed scheme substantially reduces 

the computational cost without hampering the total bitrate. 

Table I summarizes the effect of our scheme in terms of 

bitrate, PSNR, complexity, and the execution time for each 

stream. In our study, we used the Bugaboo Dell Xeon 

cluster from WestGrid, a high performance computing 

consortium in Western Canada [12].  A blade with an Intel 

Xeon X5650 6-core processor, running at 2.66GHz, and 8-

GB RAM was used for the simulations. The execution time 

reductions reported here are for the dependent view. As it 

can be observed, our scheme outperforms the method 

proposed in [7], reducing the complexity by up to 51.95% 

(24.61% for [7]), or decreasing the execution time by up 

44.28% (22.13% for [7]) while increasing the bitrate by a 

mere 2.06% (4.31% for [7]. In summary, these results show 

the superiority of our scheme over the method proposed in 

[7].   

 

4. CONCLUSIONS 
 

In this paper, we proposed a content adaptive complexity 

reduction scheme for 3D-HEVC. In our approach a fast 

mode decision scheme is employed using a Bayesian 

classifier to predict the block mode in the dependent view 

using information of already encoded neighboring blocks in 

the base and dependent views. Performance evaluations 

show that our approach significantly reduces the coding 

complexity of 3D-HEVC (up to 51.95%) while minimally 

hampering the overall bitrate. 
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