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ABSTRACT

The statistical angular resolution limit (RL) of two closely-spaced
point sources in array processing is analyzed based on the frame-
work of hypothesis test. For the first time, the general case where
neither the source signals nor the parameters of interest are known
under both the null hypothesis and the alternative is considered. Us-
ing the theory of misspecified model, the asymptotic distribution
of the twice log-generalized-likelihood-ratio statistic under the al-
ternative hypothesis is derived. It is shown to be non-central chi-
squared distributed with degrees of freedom equal to the difference
in dimensionality of the parameters under both hypotheses, and non-
centrality parameter closely related to the Kullback-Leibler diver-
gence of the probability density functions under both hypotheses.
The information-theoretic-criteria-based model order selection rules
are adopted and a novel detection-based RL is derived. The Cramér-
Rao bound (CRB)-based RL is also derived for comparison. It is
observed that the detection-based RL and the CRB-based RL are
fundamentally different in such general case. Numerical simulations
verify the theoretical results.

Index Terms— resolution limit, misspecified model, array pro-
cessing, hypothesis test, generalized likelihood ratio test, Cramér-
Rao bound, information-theoretic-criteria

1. INTRODUCTION

The resolvability of two closely-spaced sources is a fundamental
problem in a variety of applications and has been widely studied in
the literature. The resolution limit (RL), which is generally defined
as the minimum distance (w.r.t. the parameter of interest) beyond
which accurate resolution of the signals is highly probable [1, 2],
is commonly used to characterize the resolvablity of closely spaced
signals. Basically, there are three definitions of resolution. The first
one concerns a specific algorithm (e.g., MUSIC) and the relevant
criteria are focused on approximately testing the presence of two
peaks. We refer the interested readers to [3] for detailed definitions,
motivations and comparisons.

The second one is based on estimation accuracy and the RL is
defined in the sense of reliability of the parameter estimates [4, 5].
Hence, most works tend to adopt a Cramér-Rao bound (CRB) based
criterion [2, 4–6]. One of the most commonly used definition of the
RL is δ = γ

√
CRB(δ), where δ is the parameters distance, and

the user-selected γ is related to the probability that the parameter
estimates of two sources are disjoint [4] (γ = 1 in [2] and γ = 2
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in [4]). Two source signals are defined to be resolvable if the distance
between the two sources (w.r.t. the parameter of interest) is greater
than γ times standard deviation of the distance estimation [2, 4].

The last one is based on detection theory and uses the hypothesis
test formulation [1,7–9]. In this framework, resolvablity refers to the
ability to distinguish whether the measurements are generated by one
point source (hypothesis H0) or two (hypothesis H1). The general-
ized likelihood ratio test (GLRT) is the most commonly used method
to deal with this problem [1, 7, 8, 10–13], except for [9, 14] employ-
ing a Bayesian approach. However, most previous works based on
GLRT make some ideal assumptions on the parameters of interest,
e.g., the true parameters of the two radar targets are assumed to be
known in [10], the frequency of the single real sinusoid under H0 is
assumed to be known in [1] in the spectral analysis context, and the
parameter of the single source under H0 is assumed to be the center
parameter and known in [11, 12] in array processing context. To the
best of our knowledge, no results are available for the general case
where all the parameters are unknown.

In addition, the comparison between the detection-based RL and
the estimation-based RL has not yet been sufficiently studied. In
particular, it is revealed in [8] that a strong relation exists between the
RL based on the CRB criterion and the hypothesis test formulation,
i.e., based on hypothesis testing, the relation δ = γ

√
CRB(δ) can

also be obtained and γ is analytically determined by the pre-specified
probability of detection and probability of false alarm. Whereas in
an earlier work [15], it is claimed that one can detect the presence
of closely-spaced signals at a signal-to-noise ratio (SNR) lower than
the SNR required for reliable estimation of the signals’ parameters.

The aim of this work is to fill the gap in the framework of hy-
pothesis test and revisit the relation between the detection-based RL
and the estimation-based RL shown in [8]. In this paper, the angu-
lar RL of two closely-spaced sources in array processing is consid-
ered based on the framework of hypothesis test, and the general case
where neither the source signals nor the direction of arrivals (DOA)
are known under both the null hypothesis and the alternative is ad-
dressed. The rest of this paper is organized as follows. In section
2, we introduce the signal model and formulate a binary hypothe-
sis test. In section 3, we derive the detection-based RL by adopting
the information-theoretic-criterion (ITC) to determine the number
of sources. In section 4, we compare the ITC-based RL with the
estimation-based RL. To this end, the closed-form expression of the
RL based on Smith’s criterion [2] is derived. We present numerical
examples in section 5 and finally draw the conclusions in section 6.

Notations: Throughout this paper, matrices are denoted by bold
capital letters, and vectors by bold lowercase letters. (·)T and (·)H
denote the transpose and conjugate transpose, respectively. ∥ · ∥
denotes the Euclidean norm. ⊗ denotes the Kronecker product. IL
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stands for the L × L identity matrix. R and C denote the sets of
all real numbers and complex numbers, respectively. ℜ{·} and ℑ{·}
denote the real part and imaginary part of the argument, respectively.
χ′ 2
L (λ) is a noncentral chi-squared distribution with L degrees of

freedom and non-centrality λ. Qχ′ 2
L

(λ) is the right tail probability
for a noncentral chi-squared probability density function (PDF).

2. PROBLEM FORMULATION

Consider a linear symmetrical sensor array consisting of N elements
with known positions given by the vector d = [d1 d2 · · · dN ]T ,
d∈RN×1 and the origin of coordinate being the center of the array.
Let s1,s2 ∈CL×1 denote two far-field and narrow-band source sig-
nals in L snapshots.v(ωk)=[ejωkd1 ejωkd2 · · · ejωkdN ]T, k= 1, 2
denote the two linearly-independent array steering vectors, where
ωk = 2π

ν
cos θk is the parameter of interest, with θk denoting the

DOA relative to the baseline of the array and ν the wavelength. The
array outputs are corrupted by spatially and temporally white circu-
larly symmetric complex Gaussian noises with mean zero and vari-
ance σ2. After collecting the array outputs from L snapshots into a
vector z, z∈CNL×1, the data model is given by

z = V1s1 + V2s2 +w (1)

where V1=IL ⊗ v(ω1) and V2=IL ⊗ v(ω2), V1,V2 ∈ CNL×L.
We assume that ω1, ω2, s1 and s2 are deterministic but un-

known. The noise variance σ2 is assumed to be known. An ex-
tension to the case of unknown σ2 has been considered in [16] but
is beyond the scope of this paper. To simplify the derivations, we
define Kr =

∑N
i=1 d 2r

i , r = 0, 1, 2. Without loss of generality, we
assume that ω1 < ω2 and the parameters distance of the two sources
are defined by δ , ω2 − ω1.

Let the hypothesis H0 embody the case where the two sources
are unresolvable and are taken as a single source s0 with parameter
ω0, and the hypothesis H1 represent the case where the two distinct
sources are resolvable. A binary hypothesis test formulation of the
resolution problem is given by{

H0 : z = V0s0 +w

H1 : z = V1s1 + V2s2 +w
(2)

where V0 = IL ⊗ v(ω0). Both s0 and ω0 are assumed to be un-
known, in contrast to previous works [1, 7, 11–13].

3. RESOLUTION LIMIT BASED ON ITC

The GLRT is the most commonly used tool for the problem (2). Un-
fortunately, the hypothesis test (2) is nonstandard [17] and the Wilks’
theorem does not apply [18]. The asymptotic chi-squared distribu-
tion of the GLRT statistic under the null hypothesis no more holds
and, in fact, is asymptotically distributed as the maximum of a χ2

random field [19]. Nevertheless, in section 3.1, we shall show that
based on the theory of misspecified model [18, 20–22], we can still
obtain the asymptotic distribution of the GLRT statistic under H1 for
the resolution problem. However, as the distribution of the GLRT
statistic under the null hypothesis is rather complicated, it is hard to
choose the detection threshold given a pre-specified probability of
false alarm. In section 3.2, we resort to the ITC to determine the
detection threshold and derive an ITC-based RL. The ITC has been
used in [23] to discuss the resolution of complex exponentials in the
spectral analysis context, using an unconditional model. However,
only a heuristic resolution threshold is considered therein and the
result is limited to equi-powered signals.

3.1. Asymptotic distribution of the GLRT statistic under H1

Let z̆ =
[
ℜ{z}T ℑ{z}T

]T and w̆ =
[
ℜ{w}T ℑ{w}T

]T . We
rewrite the binary hypothesis test in the following “realified” form{

H0 : z̆ = H̆0x̆0 + w̆

H1 : z̆ = H̆1x̆1 + w̆
(3)

where x̆1 =
[
ℜ{s1}T ℑ{s1}T ℜ{s2}T ℑ{s2}T

]T and x̆0 =[
ℜ{s0}T ℑ{s0}T

]T. Let ϑ1=[x̆T
1 ω1 ω2]

T and ϑ0 = [x̆T
0 ω0]

T

denote the unknown parameters under H1 and H0, respectively.
When hypothesis H1 is true, the signal model under hypothesis H0

can be viewed as a misspecified model [21, 24]. In this case, the
maximum-likelihood (ML) estimator under a misspecified model is
called the quasi-maximum-likelihood (QML) estimator. It is shown
in [20,21] that the QML estimate converges to a limit that minimizes
the Kullback-Leibler (KL) divergence [25] between the true PDF
p1(z̆|ϑ1) and the misspecified PDF p0(z̆|ϑ0), i.e.,

ϑ∗
0 = argmin

ϑ0

D(p1||p0) = argmin
ϑ0

∥H̆1x̆1 − H̆0x̆0∥2/σ2

= argmin
ϑ0

∥V1s1 + V2s2 − V0s0∥2/σ2
(4)

In order to obtain an analytical expression for the ITC-based RL,
we exploit the fact that δ is small and approximate V1 and V2 using
a first-order Taylor expansion around ω0, then we have

D(p1|| p0) ≈ ∥V0(s1 + s2 − s0) + V̇0(δ2s2 − δ1s1)∥2/σ2 (5)

where δ1 = ω0 − ω1, δ2 = ω2 − ω0 and V̇0 = ∂V0
∂ω0

. It is easy to
obtain that

x̆∗
0 =

[
ℜ{s∗

0}T ℑ{s∗
0}T

]T
, s∗

0 = s1 + s2 (6)

ω∗
0 =

ω1 + ω2

2
+

∥s2∥2 − ∥s1∥2

2(∥s1∥2 + ∥s2∥2 + 2ℜ{sH
1 s2})

δ (7)

Dmin ≈ ∥V̇0r
∗
0∥2

σ2
=

∥s1∥2∥s2∥2 −ℜ{sH
1 s2}2

∥s1∥2+∥s2∥2+2ℜ{sH
1 s2}

K1δ
2

σ2
(8)

where Dmin = min
ϑ0

D(p1|| p0), r∗
0 = δ∗2s2 − δ∗1s1, δ∗2 = ω2 − ω∗

0

and δ∗1 = ω∗
0 − ω1. The QML estimate of ϑ0 is given by

ϑ̂0 = argmin
ϑ0

2

σ2
∥H̆1x̆1 − H̆0x̆0 + w̆∥2 (9)

It is also proved that the QML estimate is asymptotically Gaussian
for large data records [20] or high SNR [21]. Based on the implicit
function theorem [26, Theorem 3.5.1] and following [21,27], we can
obtain

ϑ̂0 − ϑ∗
0 ≈ −Φ−1

0 Ψ0w̆ (10)

in the asymptotic sense (large data records or high SNR), where

Ψ0=
∂f(ϑ0, w̆)

∂w̆

∣∣∣∣
(ϑ∗

0 ,0)

, Φ0=
∂f(ϑ0, w̆)

∂ϑ0

∣∣∣∣
(ϑ∗

0 ,0)

(11)

f(ϑ0, w̆)=
2

σ2

(
∂(H̆0x̆0)

∂ϑ0

)T(
H̆1x̆1 − H̆0x̆0 + w̆

)
(12)

Let ϑ̂1 denote the ML estimate of ϑ1. Based on the implicit function
theorem, we can also have [27]

ϑ̂1 − ϑ1 ≈ −Φ−1
1 Ψ1w̆ (13)
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asymptotically, where

Ψ1=
2

σ2

(
∂(H̆1x̆1)

∂ϑ1

)T

, Φ1=−Ψ1Ψ
T
1

2
σ2 (14)

The Taylor expansion of ln p0(z|ϑ∗
0) and ln p1(z|ϑ1) around ϑ̂0

and ϑ̂1 lead to [18, 22, 28, 29]

ln p0(z|ϑ∗
0) ≈ ln p0(z|ϑ̂0)+(ϑ̂0 − ϑ∗

0)
TΦ0(ϑ̂0 − ϑ∗

0)/2 (15)

ln p1(z|ϑ1) ≈ ln p1(z|ϑ̂1)+(ϑ̂1 − ϑ1)
TΦ1(ϑ̂1 − ϑ1)/2 (16)

Define P0 = −σ2

2
ΨT

0 Φ
−1
0 Ψ0 and P1 = ΨT

1 (Ψ1Ψ
T
1 )

−1Ψ1, then

ln p0(z|ϑ∗
0) ≈ ln p0(z|ϑ̂0)− w̆TP0w̆/σ2 (17)

ln p1(z|ϑ1) ≈ ln p1(z|ϑ̂1)− w̆TP1w̆/σ2 (18)

After some mathematical manipulations, we have

Ψ0 =
2

σ2

[
ℜ{V ∗

0 } −ℑ{V ∗
0 } ℜ{V̇ ∗

0 s∗
0}

ℑ{V ∗
0 } ℜ{V ∗

0 } ℑ{V̇ ∗
0 s∗

0}

]T

(19)

Φ0 ≈ − 2

σ2

 K0IL 0 −K1ℜ{r∗
0}

0 K0IL −K1ℑ{r∗
0}

−K1ℜ{r∗
0}T −K1ℑ{r∗

0}T K1∥s∗
0∥2

 (20)

Ψ1 = 2/σ2 ×[
ℜ{V1} −ℑ{V1} ℜ{V2} −ℑ{V2} ℜ{V̇1s1} ℜ{V̇2s2}
ℑ{V1} ℜ{V1} ℑ{V2} ℜ{V2} ℑ{V̇1s1} ℑ{V̇2s2}

]T

(21)

where V ∗
0 = IL ⊗ v(ω∗

0), V̇ ∗
0 =

∂V ∗
0

∂ω∗
0

, V̇1 = ∂V1
∂ω1

and V̇2 = ∂V0
∂ω2

.
We have proved in [16] that

P0
F
≈ P ′

0 = ΨT
0 (Ψ0Ψ

T
0 )

−1Ψ0, if ∥V0s
∗
0∥2 ≫ ∥V̇0r

∗
0∥2 (22)

where “
F
≈” denotes “approximately equivalent in the sense of Frobe-

nius norm”. We note that the condition ∥V0s
∗
0∥2 ≫ ∥V̇0r

∗
0∥2 acts

similarly to the weak signal condition for the asymptotic perfor-
mance of GLRT [30, pp. 205], as we try to detect the component
∥V̇0r

∗
0∥2 in the presence of ∥V0s

∗
0∥2 and noise. It is the principal

case that we are interested in for the resolution problem. An equiva-
lent form of the condition will be

δ ≪
√

K0

K1

∥s1 + s2∥2√
∥s1∥2∥s2∥2 −ℜ{sH

1 s2}2
(23)

Let

ξ =

√
2

σ2

[
ℜ{V̇0r

∗
0}

ℑ{V̇0r
∗
0}

]
, w̄ =

√
2

σ2
w̆, P = P1 − P ′

0 (24)

then from (17) and (18) we have

2 lnLG(z) ≈ ξT ξ + 2ξT w̄ + w̄TPw̄ (25)

where 2 lnLG(z) is the twice log-generalized-likelihood-ratio sta-
tistic. In [16], we also prove that P is approximately a symmetric,
idempotent matrix with rank 2L+1 and Pξ ≈ ξ as δ is small, then

2 lnLG(z) ≈ (ξ + w̄)TP (ξ + w̄) (26)

As E{w̄w̄T } = I2NL, we have [31, Theorem 5.11]

2 lnLG(z)
a∼ χ′ 2

2L+1(λ), under H1 (27)

where

λ =
2K1

σ2

∥s1∥2∥s2∥2 −ℜ{sH
1 s2}2

∥s1∥2 + ∥s2∥2 + 2ℜ{sH
1 s2}

δ2 ≈ 2Dmin (28)

It is crucial to emphasize that 2L + 1 is exactly the difference in
dimensionality of the parameters under both hypotheses.

3.2. RL based on ITC

The commonly used model order selection rules based on ITC for
the problem considered have a common form, i.e., [32]

k = argmin
k

− 2 ln pk(z, ϑ̂
k) + k(2L+ 1)C(k,NL) (29)

where k is the model order, NL is the data length, C(k,NL) = 2
for the Akaike information criterion (AIC) [33] and C(k,NL) =

lnNL for the minimum description length (MDL) [34], pk(z, ϑ̂k)

is the likelihood function, ϑ̂k is the ML estimate of the unknown
parameters and k(2L+ 1) is the total number of model parameters.
It is easy to show that for the two point sources resolution problem,
we have

2 lnLG(z)
H1

R
H0

ηITC (30)

where ηITC = (2L+1)C(k,NL) is the threshold determined by ITC.
The probability of detection (also referred as the resolution success
rate [9, 14]) Ps is then given by

Ps = Qχ′ 2
2L

(λ)(ηITC) (31)

For a pre-specified resolution success rate Ps, the ITC-based RL δI

can be given by

δI =

√
λ(Ps)σ2

2K1

∥s1∥2 + ∥s2∥2 + 2ℜ{sH
1 s2}

∥s1∥2∥s2∥2 −ℜ{sH
1 s2}2

(32)

from (28), where λ(Ps) is obtained by solving (31). We can see that
when ∥s1+s2∥2

σ2 ≫ λ(Ps)
2K0

, the RL δI satisfies the condition (23).

4. COMPARISON WITH CRB-BASED RL

In previous works, the CRB-based RLs based on δ = γ
√

CRB(δ)
are limited to non-closed-form solutions [2] or simplified context
(e.g., known source signals [35, 36] or one known DOA [37]). To
the best of our knowledge, there is no general closed-form expres-
sion for the CRB-based RL in the case of both unknown source sig-
nals and DOA’s. To make a comparison with the CRB-based RL
δC =

√
CRB(δC) according to [2], we obtain the CRB on δ via the

complexified approach [2] and derive an approximate closed-form
expression of δC based on a high-order Taylor expansion (see [16]
for more details, here we simply present the results):

δC ≈
(

2σ2

K2 − K2
1/K0

∥s1∥2 + ∥s2∥2 − 2ℜ{sH
1 s2}

∥s1∥2∥s2∥2 −ℜ{sH
1 s2}2

) 1/ 4

(33)

We can see that the CRB-based RL (33) and the detection-based
RL (32) are fundamentally different and no explicit relation exists
between them. It is worth noting that [8] requires the binary hy-
pothesis test to be a standard one which can be formulated as testing
whether δ = 0 or not, such that the twice log-generalized-likelihood-
ratio statistic under H1 follows a χ′ 2

1 (λ′) distribution where λ′ =

δ2CRB−1(δ) (i.e., δ =
√
λ′
√

CRB(δ)). In comparison, the equiva-
lent test for (2) is [38]{

H0 : δ = 0 or s1 = 0 or s2 = 0
H1 : otherwise

(34)

which is nonstandard due to loss of identifiability under the null hy-
pothesis [17] [31, pp. 291].
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Remark 1: Define SNR1 = ∥s1∥2/σ2, SNR2 = ∥s2∥2/σ2 and

the correlation factor ρ= ℜ{sH1 s2}
∥s1∥∥s2∥

. For two equi-powered, orthog-
onal source signals (ρ = 0 and SNR1 = SNR2), we can show that
δI ∝ SNR−1/2

T while δC ∝ SNR−1/4
T , where SNRT = SNR1 +

SNR2 is the total SNR. Such a result is consistent with [15], although
the eigenvalue-based nonparametric detection method is considered
in [15] rather than the GLRT and ITC.

Remark 2: For equi-powered sources, δI ∝ (1 − ρ)−1/2 while
δC ∝ (1 + ρ)−1/4.

Remark 3: The derivations of both δI and δC require that |ρ| is
not so close to 1 that only keeping a low-order term in Taylor ex-
pansion is already accurate enough. The case of |ρ| → 1 is rather
complicate and is beyond the scope of this paper. We also note that in
the case of s1 = s2 (ρ = 1), (33) is still meaningful and is reduced

to δ ′
C ≈

(
2

K2−K2
1/K0

σ2

∥s1∥2

) 1/ 4

=
(

2
K2−K2

1/K0

σ2

∥s2∥2

) 1/ 4

. It co-
incides with the result in [2] obtained via symbolic algebra packages,
in the case of uniform linear array.

Remark 4: When both s1 and s2 are known and s0 = s1 + s2

for the hypothesis test (2), we can treat either of ω1 and ω2 as a
nuisance parameter and test whether δ = 0 or not. In this case, the
conclusions in [8] do apply and the detection-based RL and CRB-
based RL share the similar form. The CRB-based RL for such case
has been given in [35].

5. NUMERICAL EXAMPLES

In this section, numerical simulations are performed to verify the
theoretical results. We consider a uniform linear array with N = 16
sensors and half-wavelength inter-element spacing. The number of
snapshots is L = 20.

Fig. 1 shows both theoretical and numerical resolution success
rate versus SNRT for ITC-based detector (30). 500 Monte Carlo sim-
ulations are conducted for each SNRT. The two source signals are
equi-powered, with correlation factor ρ=−0.5 and DOA’s given by
60◦ and 61◦, respectively. With comparison, we can see that numeri-
cal simulations match well with the asymptotic theoretical analysis.
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(b) MDL-based detector

Fig. 1. Resolution success rate versus SNRT for ITC-based detector

Fig. 2 shows both closed-form and the exact CRB-based RL
(i.e., the solution of δC =

√
CRB(δC)) via numerical evaluation, nor-

malized by the Rayleigh limit δR = 2π
N

· 2
ν

[39, pp. 48], versus SNRT

for different ρ. It can be seen that (33) is a good approximation to
the exact CRB-based RL. We also notice that in the low SNR range,
the closed-form RL for ρ=−0.8 deviates from the exact solution.
This is because the CRB-based RL becomes close to the Rayleigh
limit such that the Taylor polynomial approximation fails.
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Fig. 2. Normalized CRB-based RL versus SNRT

Fig. 3 compares the AIC-based RL, MDL-based RL according
to (32) and the CRB-based RL according to (33) for the case of two
orthogonal, equi-powered source signals. All of them are normalized
by the Rayleigh limit. The pre-specified resolution success rate for
ITC-based RL is set to Ps = 0.7. One can observe that to reduce δI

and δC by a factor of 10, the total SNR must be increased by 20 dB
and 40 dB, respectively.

0 10 20 30 40 50 60 70 80
−40

−35

−30

−25

−20

−15

−10

−5

0

5

SNR (dB)

1
0
lo
g 1

0
(δ

lim
/
δ
R
)

Rayleigh

CRB

MDL

AIC

Fig. 3. Comparison of the ITC-based RL and the CRB-based RL

6. CONCLUSIONS AND FUTURE WORK

In this paper, the statistical angular RL of two closely-spaced point
sources in array processing based on hypothesis test is considered
for the general case where neither the source signals nor the param-
eters of interest are known under both the null hypothesis and the al-
ternative. The asymptotic distribution of the twice log-generalized-
likelihood-ratio statistic under the alternative hypothesis is derived
based on the theory of misspecified model. The ITC-based model
order selection rules are adopted and the relevant RLs are obtained.
To make a comparison, the closed-form expression of the CRB-
based RL is also derived. It is shown that in such general case, the
detection-based RL and the CRB-based RL are fundamentally dif-
ferent. We also show that for two orthogonal, equi-powered sources,
the CRB-based RL is more pessimistic, which accords with earlier
observations [15, 23].

An alternative approach based on approximate GLRT has been
addressed by the authors and a similar form of detection-based RL
is also obtained. Due to space limitations, we shall present it in a
journal paper in preparation [16].
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