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ABSTRACT

It is widely recognized that one of the factors that are going to yield
the most significant capacity increase in wireless networks is spatial
reuse of radio resources through dense deployment of radio access
points. This leads to the development of small cell networks where
different size cells, e.g. macro cells, picocells, femtocells, relays,
coexist under the same standard. Of course, dense deployment is
able to unravel its potential benefits only provided that interference
is properly managed. In this paper, we propose an algorithm able
to perform cell association and radio resource allocation jointly, in
order to maximize the sum rate in a MIMO (interference) network.
Cell selection is inherently a combinatorial problem. To deal with
the nonconvexity, we introduce a suitably chosen convex relaxation
of the objective function and develop a fast algorithm converging to
a locally optimal solution of the nonconvex problem.

Index Terms— Resource allocation, Cooperation, MIMO sys-
tems, Interference channels, Successive convex approximation.

1. INTRODUCTION

The foreseen massive deployment of small cell base stations cover-
ing limited areas and coexisting with current macrocells and pico-
cells is expected to produce a capacity boost, provided that appro-
priate interference management mechanisms are incorporated in the
network [1]. On the other hand, high capacity wired links among
small cell base stations create the opportunities for cooperative mul-
tipoint communications among base stations, which makes possible
better interference management. In the scenario created by a mas-
sive deployment of small cell networks, one of the primary tasks is
to devise a proper cell selection mechanism assigning mobile users
to small cell base stations (BS), taking into account the coexistence
of superimposed cells in the same area. The problem of jointly opti-
mizing cell selection and radio resource allocation was considered
in [2] for single antenna systems. Of course, the availability of
multiple antennas at the BS facilitates dynamic assignment using
receive beamforming. In [3] and [4], the authors studied the joint
cell assignment/allocation problem in uplink and downlink systems,
respectively; they proposed a joint optimization of the mobile trans-
mit powers and receive beamforming in order to minimize the total
transmit power, subject to Signal to Interference plus Noise Ratio
(SINR) constraints. A joint network optimization (cell association)
and beamforming for Coordinated Multipoint (CoMP) transmissions
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was recently considered in [5], [6]. In [5] the problem was formu-
lated as a mixed integer second-order cone programming with the
goal of minimizing the overall BS power consumption, while guar-
anteeing Quality of Service (QoS) to the mobile users. The assign-
ment/allocation problem was then reconsidered in [7] in a more gen-
eral MIMO set-up. In such a case, the goal is to find the optimal pre-
coding matrices and BS assignment jointly. In the effort to devise
distributed solutions, with limited exchange of information among
the nodes, in [7], the problem is formulated as a game incorporating
a pricing mechanism to “punish” mobile users for causing interfer-
ence. A different perspective to the BS assignment problem was
recently proposed in [8], where the goal is minimizing the number
of active base stations still being able to guarantee a QoS to the mo-
bile users. This is indeed a very promising approach in the current
green paradigm, to save the overall energy consumption, as it allows
to switch off the BS’s dynamically, depending on the overall traffic
load, without incurring in appreciable performance degradation.

In this paper, we propose a fairly general approach to the
joint BS association and resource allocation problem for MIMO
transceivers, with the goal of finding the precoding matrices and BS
associations in order to maximize the sum rate. Each BS is enabled
to decode a set of mobile users jointly, where the number of users
assigned to each cell is to be determined based upon the interference
conditions. We impose only an upper bound on the maximum num-
ber of decodable signals dictated by complexity constraints as well
as by the need to guarantee the existence of a zero-forcing decoder.
The latter constraint is dictated by the ratio between the number of
receive and transmit antennas. The optimization variables are the
precoding matrices and the binary values associating each mobile
user to a base station. In general, the association problem is com-
binatorial. To deal with this inherent nonconvexity, we develop a
provable convergent solution method hinging on the idea of Succes-
sive Convex Approximations (SCAs) [9]: The original nonconvex
problem is replaced by a sequence of suitably chosen low complex-
ity convex subproblems. The method is proved to converge to a local
optimal solution of the nonconvex problem. Quite remarkably, the
proposed approximation is such that every limit point generated by
the algorithm is discrete in the BS association variables. Therefore,
there is no need of any further, somehow arbitrary, discretization of
the solution. Finally, numerical results show that the algorithm is
remarkably fast and able to yield a significant performance improve-
ment while enabling the receivers to decode a variable number of
users, depending on the overall interference scenario.

2. SYSTEM MODEL AND PROBLEM FORMULATION

Let us consider a small cell network where I small cell base sta-
tions, or small cell enhanced Node B (SCeNBs) in LTE terminology,
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aim to serve J mobile users. One of the distinguishing features of
small cell networks, with respect to macro-cellular networks, is that
the number of active mobile users is of the same order of magnitude
of the number of small cell access points. For notation simplicity
and without loss of generality, in this work, we consider the case
of I = J . We study the uplink transmissions, assuming the mobile
users and the receiving BS’s to be equipped with nTi and nRi anten-
nas, respectively, with i = 1, . . . , I . Our goal is to find out the set of
mobile users to be served by each base station and the precoding ma-
trix of each transmitter, in order to maximize the sum of rates in each
cell. Just because the number of users served by each access point
is a variable, some base stations can end up with no users to serve,
whereas other stations may have multiple users to be served simul-
taneously. We impose an upper bound on this number. Under this
scenario, the users assigned to the same cell do not interfere with
each other, whereas of course there is intercell interference. Fur-
thermore, in this work we assume that each mobile belongs to only
one cell. Future developments may include the case where a user
may be served by multiple cells. To identify which user is served by
which base station, we introduce the so called cooperation matrix A,
whose coefficients (aij)

I
i,j=1 are such that aij = 1 if mobile user

j is associated to the i-th BS, and aij = 0 otherwise. We assume
these binary variables to satisfy the following conditions: i) aij = 0
if j /∈ Ni where Ni represents the largest set of users that BS i
can serve, whose cardinality |Ni| is Di � |Ni|; ii)

∑
j aij ≤ Di,

∀i ; and iii)
∑

i aij = 1, ∀j, since each mobile can belong only
to one coalition. According to this notation, the nonzero entries of
each vector ai � (aij)

I
j=1 represent the set of users assigned to BS

i. Additionally, the transmit covariance matrix Qi ∈ C
nTi

×nTi , to
be optimized by each mobile user, is subject to the following power
constraints:

Qi �
{
Qi ∈ C

nTi
×nTi : Qi � 0, tr (Qi) ≤ Pi, and Qi ∈ Pi

}
,

where Pi is the average transmit power of user i, and Pi ⊆
C

nTi
×nTi is an arbitrary convex and closed set suitable to accom-

modate additional local constraints, such as interference constraints,
null constraints, per-antenna constraints, etc.

Throughout the paper, we will use the following notation: Q �
{Q � (Qi)

I
i=1 : Qi ∈ Qi,∀i = 1, . . . , I} is the joint set of

users’ power constraints, Q−i � (Qj)j �=i is the tuple of all users’
covariance matrices except the one of user i, whose associated fea-
sible set is Q−i � {Q−i : Qj ∈ Qj ,∀j �= i}; similarly we define
a � (ai)

I
i=1. In the above setting, the sum-rate of each cell i is:

Ri(Q,ai) = log det

(
I+

(
I∑

j=1

aijHijQjH
H
ij

)
R̃i (Q,ai)

−1

)

where Hij ∈ C
nRi

×nTj is the cross-channel matrix between the
transmitter j and the receiver (BS) i, and

R̃i (Q,ai) = Rni +
I∑

j=1

(1− aij)HijQjH
H
ij (1)

is the covariance matrix of the multiuser interference plus noise, with
Rni � 0. The system design proposed in this paper consists in
optimizing jointly the users’ covariance matrices Q = (Qi)

I
i=1 and

the cooperation matrix A in order to maximize the sum-rate of all

cells. More formally, we have the following

max
Q,a

U(Q, a) �
I∑

i=1

Ri(Q,ai)

s.t. Q ∈ Q,
ai ∈ {0, 1}I , 1T

I ai ≤ Di,

I∑
i=1

aij = 1, ∀ i, j,
(2)

where 1I denotes the column vector of all ones. The constraints on
the entries aij are introduced to enforce a maximum number of users
per cell Di and the requirement for each mobile user to be served by
a single BS. The value Di has to be chosen in order to enable zero-
forcing decoding which implies Di = nRi/nT with nRi ≥ nT and
assuming all mobiles equipped with the same number of transmit
antennas.
Unfortunately, problem (2) is NP-hard in general, even if one fo-
cuses only on the optimization of the covariance matrices Q. Things
are even more complicated because of the integer nature of the coef-
ficients aij . It turns out that it is not possible to compute its global
optimal solution in polynomial time. Motivated by the above NP-
hardness, we propose computational affordable algorithms still able
to obtain high-quality (albeit suboptimal in principle) solutions for
problem (2). To this end, we start using the popular relaxation of the
integer constraints, enabling the entries aij to belong to the follow-
ing convex set

A�

⎧⎨⎩(aij)
I
i,j=1 : aij ∈ [0, 1],

∑
j∈Ni

aij ≤ Di,
I∑

i=1

aij = 1, ∀ i, j
⎫⎬⎭.

(3)
The relaxed version of (2) can then be expressed as

max
Q,a

U(Q,a) =
I∑

i=1

Ri(Q,ai)

s.t. Q ∈ Q,
a ∈ A.

(4)

Note that (4) is still NP-hard [10]. In what follows, we will exploit
the structure of (4) and, building on some recent techniques intro-
duced in [9], we develop a fast distributed algorithm converging to
a local optimal solution of (4). Quite interestingly, every stationary
solution computed by the proposed algorithm is feasible for the orig-
inal problem (2) and, in particular, the coefficients aij of any such
solutions turn out to be integer.

3. ALGORITHMIC DESIGN
To solve the non-convex problem (4) efficiently, we develop an SCA-
based method [9] where all the users solve a sequence of decoupled
strongly convex optimization problems in the Q-variables. At the ba-
sis of the proposed technique, there is a suitably chosen concave and
separable approximation of the sum-rate function U(Q,a), which is
preliminarily discussed next.

3.1. A (successive) convex approximation function for U(Q, a)

We start observing that each rate Ri(Q, ai) can be written as

Ri(Q,ai) � f
(1)
i (Q) + f

(2)
i (Q, ai) (5)

where

f
(1)
i (Q) � log det

(
Rni +

I∑
j=1

HijQjH
H
ij

)
(6)

is a (twice-continuously R-differentiable with Lipschitz continuous
conjugate gradient [11] and) concave function onQ, whereas
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f
(2)
i (Q, ai) � − log det

(
Rni +

I∑
j=1

(1− aij)HijQjH
H
ij

)
is a twice-continuously (R-)differentiable and convex function on
Q × Ai. For notational simplicity, let us define Z � (Q,a) =

(Zi)
I
i=1, with Zi � (Qi,ai) being the optimization variables of

user i; associated with each Z let us also introduce the joint strategy
set Z � {Z � (Q,a) : Q ∈ Q and a ∈ A}. Finally, given
the matrix tuples A � (Ai)

I
i=1 and B � (Bi)

I
i=1, with each Ai

and Bi complex matrix whose product AH
i Bi is well-defined, let

〈A ,B〉 � ∑
i Re{tr (AH

i Bi

)}. Similarly, with a slight abuse of
notation, we will use the same symbol also to denote the inner prod-
uct between real vector tuples a � (ai)

I
i=1,b � (bi)

I
i=1, that is

〈a ,b〉 �∑i a
T
i bi, with each aT

i bi well defined.
Exploiting the concavity-convexity structure of each Ri(Q, ai)

as in (5), a concave approximation of the sum-rate function U(Q, a)
for each user i can be obtained by retaining the concave part of
U(Q,a) with respect to (Qi,ai) while linearizing the rest. More
formally, introducing the notation Zν = (Qν

i , a
ν
i )

I
i=1 ∈ Z to de-

note the value assumed by Z at step ν, we define for each user i the
“approximation” function

Ũi(Zi;Z
ν) � f̃

(1)
i (Qi;Z

ν) + f̃
(2)
i (ai;Z

ν) (7)

with
f̃
(1)
i (Qi;Z

ν) � f
(1)
i (Qi,Q

ν
−i) + 〈Πi(Z

ν) ,Qi −Qν
i 〉

− τQi ||Qi −Qν
i ||2 (8)

and
f̃
(2)
i (ai;Z

ν) � f
(2)
i (Qν ,aν

i ) + 〈πi(Z
ν) , ai − aν

i 〉 , (9)

where: i) Πi(Q
ν) in (8) is the linearization of the terms in U(Q)

that are not concave in Qi, that is

Πi(Z
ν) �

∑
j �=i

∇Q∗
i
Rj(Z

ν) +∇Q∗
i
f
(2)
i (Qν ,aν

i ), (10)

where∇Q∗
i
Rj denotes the conjugate gradient of Rj [11], given by

∇Q∗
i
Rj(Z)=

(
ajiH

H
ji − (1− aji)H

H
ji R̃j(Q,aj)

−1Fj(Q,aj)
)

·(I+ R̃j(Q, aj)
−1Fj(Q,aj))

−1R̃j(Q,aj)
−1Hji,

and ∇Q∗
i
f
(2)
i (Q,ai) = −(1 − aii)H

H
ii R̃i(Q,ai)

−1Hii, with
Fj(Q,aj) =

∑I
k=1 ajkHjkQkH

H
jk; ii) τQi > 0 in the proximal

regularizations in (8) makes f̃ (1)
i (Qi;Z

ν) strongly concave; and iii)
πi(Z

ν) in (9) is the linearization of the convex part f (2)
i (Q, ai)

w.r.t. ai, that is πi(Z
ν) � ∇aif

(2)
i (Zν) = (πij(Z

ν))Ij=1with

πij(Z
ν) � tr

(
HijQ

ν
jH

H
ijR̃i (Q

ν ,aν
i )

−1
)

. Note that Ũi(Zi;Z
ν)

is a strongly concave function in Qi and linear in ai, for any given
Zν . Based on each Ũi(Z;Z

ν), we can now define the candidate
sum-rate “approximation”: For any given Zν ∈ Z, let

Ũ(Z;Zν) �
I∑

i=1

Ũi(Zi;Z
ν). (11)

Note that Ũ(Z;Zν) has many desirable properties, such as: i) it is
separable in the users variables Zi = (Qi,ai); ii) it is linear in a;
and iii) it is uniformly strong concave in Q ∈ Q [12]; we will denote
by cτ > 0 the constant of strong concavity, that is cτ is the largest
positive scalar such that [11]〈

Q1 −Q2,∇Q∗ Ũ
(
(Q1, a);Zν)−∇Q∗ Ũ

(
(Q2,a);Zν)〉

≤ −cτ
∥∥Q1 −Q2

∥∥2, ∀Q1, Q2 ∈ Q, Zν ∈ Z,a ∈ A.
(12)

An explicit expression of cτ is given in [12] and is omitted here
because of space limitation; we only observe that cτ ≥ mini{τQi},
and the equality holds when all {Hii}Ii=1 are column rank deficient.
We are now ready to introduce the proposed convex approximation
of the nonconvex problem (4), which just consists in replacing U(Z)

in (4) with the concave approximation Ũ(Z;Zν), namely: Given
Zν ∈ Z,

Ẑ(Zν) �
(
Q̂(Zν), â(Zν)

)
∈ argmax

Z�(Q,a)∈Z

{
Ũ(Z;Zν)

}
, (13)

where we denoted by Ẑ(Zν) = (Q̂(Zν), â(Zν)) � (Q̂i(Z
ν),

âi(Z
ν))Ii=1 the solution of (13). Note that the Q-part of Ẑ(Zν) is

unique for any given Zν , whereas the a-part generally is not. Thanks
to the separability of Ũ(Z;Zν) as well as Z in the Q̂i(Z

ν)’s and
â(Zν), each solution Ẑ(Zν) can be efficiently computed solving
for each i separately the following convex optimization problems:
Given Zν ,

Q̂i(Z
ν) = argmax

Qi∈Qi

{
f̃
(1)
i (Qi;Z

ν)
}
, i = 1, . . . , I (14)

and

â(Zν) ∈ argmax
a∈A

{
I∑

i=1

f̃
(2)
i (ai;Z

ν)

}
. (15)

Note that (15) is an LP and it is not difficult to see that any solution
must satisfy â(Zν) ∈ {0, 1}I2 , for any Zν ∈ Z (the feasible set of
the problem is a integral polyhedron [13]).

3.2. Algorithmic framework
We are now ready to introduce the proposed distributed algorithm
converging to a stationary solution of (4). It consists in solving suc-
cessively the sequence of convex optimization problems in the form
(14) and (15), starting from a feasible Z0. The formal description
of the algorithm is given in Algorithm 1 below and its convergence
properties are provided in Theorem 1 (the proof of the theorem is
omitted because of space limitation; see [12]). Note that in Step 2
we allow a memory in the update of the iterate Ẑ(Zν) in the form of
a convex combination via γν ∈ (0, 1].

Algorithm 1 Parallel Best-Response Algorithm for (4)

Data: Z0 = (Q0,a0) ∈ Z for i = 1, . . . , I ; {γν} > 0,
(τQi)

I
i=1 ≥ 0; set ν = 0;

(S.1): If Zν satisfies a termination criterion: STOP.
(S.2): In parallel, for all i = 1, . . . , I , compute Q̂i(Z

ν) solving

(14) and set Qν+1
i � Qν

i + γν
(
Q̂i(Z

ν)−Qν
i

)
;

(S.3): Compute â
(
Qν+1,aν

)
solving (15) and set

aν+1 � â
(
Qν+1,aν

)
;

(S.4): Set Zν+1 =
(
Qν+1,aν+1

)
,

(S.5): ν ← ν + 1 and go back to (S.1).

Theorem 1 Given the social problem (4), choose (τQi)
I
i=1 ≥ 0,

and {γν} so that one of the two following conditions is satisfied:

a) : 0 < inf
ν

γν ≤ sup
ν

γν ≤ γmax ≤ 1 and 2 cτ ≥ γmaxL∇U ,

with cτ defined in (12); or

b) : cτ > 0, γν ∈ (0, 1], γν → 0, and
∑
ν

γν = +∞.

Then, either Algorithm 1 converges in a finite number of iterations to
a stationary point of (4), or every limit point (Q̄, ā) of the sequence
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{Zν} (at least one such a point exists) is a stationary point of (4)
such that āij ∈ {0, 1}, for all i, j. Moreover, none of such points is
a local minimum of (4).
The algorithm implements a novel SCA decomposition: All the
users solve in parallel a sequence of decoupled strongly convex
optimization problems in the Q variables, followed by the update
of the assignment vector a. The algorithm is expected to perform
better than classical gradient-based schemes (at least in terms of
convergence speed) at the cost of no extra signaling, because the
structure of the objective functions is better preserved. It is guaran-
teed to converge under very mild assumptions (the weakest available
in the literature) while offering some flexibility in the choice of the
free parameters; see [9] for some effective guidelines in the choice
of these parameters.

4. NUMERICAL RESULTS
In this section we present some numerical results to assess the perfor-
mance of the proposed optimization strategy. For all the examples,
we consider a MIMO network with equal number I = 6 of mo-
bile users and receiving base stations equipped, respectively, with
nT = 2 and nR = 8 antennas. The pathloss exponent is assumed
to be 2 and the thermal noise power is set to 1.e−3. We simulated
Algorithm 1 using the diminishing step-size rule satisfying Theorem
1b) γν+1 = γν (1− αγν), with γ0 = 1 and α = 1.e−4. In Fig.
1 we plotted the optimal sum rate U(Q�,a�) versus the iteration
index of Algorithm 1, assuming that each base station can serve a
maximum number of mobile users Di = D, with D ≤ nR/nT and
for all i. The different curves refer to different values of the upper
bound D. The first striking feature observable from Fig. 1 is that
the proposed algorithm is able to converge in a very few iterations.
Furthermore, we may notice that, as D increases, the sum-rate in-
creases as well and the rate gain with respect to the case D = 1 is
remarkable. The reason is that, as the maximum number of mobile
users served by each base station increases, there are more degrees
of freedom to reduce the interference present in each cell. What
happens is that the final BS assignment is the result of a trade-off be-
tween the need to limit interference, which would lead to associate
all users to the same BS, and, at the same time, to have as many
active links as possible, which would lead to associating one user
per BS. Of course, the rate gain depends on the location of mobile
users and access points as well as on the channel model (path loss
exponent, etc.). In Fig. 2 we show an example of final assignment
resulting as a solution of Algorithm 1, for D = 3 and D = 4. In
this example, the optimal configurations resulting in these two cases
coincide. This result is also confirmed by Figure 1. Note that the
final base station selection tends to assign each user to its nearest
base station, while grouping the potentially strongest interferers in
the same cell. Finally, in Fig. 3 we plotted the optimal sum rate
averaged over 100 channel realizations versus the network degree D
for I = 8 (upper subplot) and I = 6 (bottom subplot). It can be
observed that the average sum rate is an increasing function of both
the maximum number of mobile users served by each base station
and the number of active base stations.

5. CONCLUSIONS
In this paper we considered the joint BS assignment and precoding
design problem for small cell MIMO networks. To deal with the in-
herently combinatorial nature of the assignment problem, we hinged
on SCA techniques and proposed a low complexity fast algorithm
with provable convergence to locally optimal solutions of the non-
convex problem. Quite interestingly, every limit point of the iterate
was proved to be integer in the assignment variables.
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Fig. 1. Optimal sum rate vs. the iteration index, for different values
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Fig. 2. Users-BS assignment, for D = 3, 4.
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