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ABSTRACT

We consider a heterogenous network (HetNet) consisting of a

number of base stations (BSs) and network routers connected via

a backhaul network. The optimal provision of such networks re-

quires proper resource allocation across the radio access links in

conjunction with appropriate traffic engineering within the backhaul

network. In this paper we propose an efficient distributed algorithm

for the joint resource allocation across the wireless links and the flow

control within the backhaul network. The proposed algorithm, which

maximizes the minimum rate among all the users and/or flows, is

based on a decomposition approach that leverages both the Alter-

nating Direction Method of Multipliers (ADMM) and the WMMSE

algorithm, and is shown to be globally convergent to a stationary

solution of the joint flow control and resource allocation problem.

Moreover, this algorithm is easily parallelizable and can be extend-

ed to the multi-antenna scenario.

Index Terms— Heterogeneous Networks, ADMM Algorithm,

Software Defined Network, Cross-layer Optimization

1. INTRODUCTION

With the advent of cloud computing technologies and the mass de-

ployment of low power base stations (BSs), the next generation cel-

lular radio access networks (RAN) has undergone a major structural

change. The traditional single-hop access mode between a serving

BS and its users is being replaced by a mesh network consisting of a

large number of wireless access points connected by either wireline

or wireless backhaul links with finite bandwidth [1]. Unfortunately,

the multi-hop nature of this architecture renders the existing single-

hop interference management techniques [2, 3] ineffective. New net-

work management methods must be developed for joint wireless re-

source allocation and traffic engineering within the multi-hop back-

haul networks. Furthermore, with cloud centers viewed as special

nodes in the backhaul network, this joint network provision prob-

lem is also a key component of the newly proposed software defined

networking (SDN) concept [4] which advocates centralized joint net-

work provisioning by cloud centers.

For a wireline network with given end-to-end flow (or commodi-

ties) demands, the traditional traffic engineering problem aims to op-

timally route the traffic from the source nodes (e.g., the cloud center-

s) to the destination nodes (e.g., the users) while satisfying the link

capacity constraints. As such, it can be formulated as a linear pro-

gramming problem [5, 6] and efficiently solved. However, the joint

resource allocation and traffic engineering problem is much more

challenging due to the multiuser interference of wireless transmis-

sion. In particular, for each wireless link, the capacity is a noncon-
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vex function of the transmit power, and is not known a priori. Power

control is an integral part of the system optimization.

The impact of the finite bandwidth of backhaul networks on

wireless resource allocation has been studied recently in the context

of joint processing between BSs, e.g., [7, 8, 9, 10]. However, these

works do not consider the existence of the multi-hop routes between

the source and the destination nodes. The joint optimization prob-

lem considered here has also been the focus of cross-layer network

utility maximization (NUM) framework, see e.g. [11, 12, 13] and

a tutorial paper [14]. In particular, reference [11] considered on-

ly the orthogonal wireless links without multiuser interference, thus

leading to tractable convex capacity functions. In [12, 13], the mul-

tiuser interference factor is considered in a fast fading environment

for which the Lagrange duality gaps can be shown to be zero. A

similar joint optimization problem is investigated by [15] in a sensor

network scenario. However, this approach assumes single-antenna

sensors and requires the utility function to be strongly convex.

For large-scale networks, it is crucial that the considered join-

t optimization problem can be implemented distributedly and/or in

parallel. Most of the existing distributed NUM algorithms is based

on the primal/dual decomposition method with subgradient update

[11], which unfortunately can exhibit slow convergence. In contrast,

we propose to leverage the Alternating Direction Method of Multi-

pliers (ADMM) [16, 17] to tackle the joint resource allocation and

traffic engineering problem. The resulting algorithm is significantly

more efficient than the subgradient-based methods. Notice that the

ADMM technique has also been successfully applied in other con-

texts of digital communication [18, 19, 20, 21].

The main contribution of this paper is the development of an

efficient algorithm that can solve the joint wireless resource alloca-

tion and the backhaul traffic engineering problem to a locally op-

timal solution. The proposed algorithm is amenable to distributed

and parallel implementation, and is therefore suitable for large-scale

networks. Moreover, the algorithm can be easily extended to the

multi-antenna case.

2. SYSTEM MODEL AND PROBLEM FORMULATION

Consider resource management and network optimization for a het-

erogenous network (HetNet). The nodes of this HetNet, V , con-

sist of the set of network routers N , the set of BSs B, and the set

of mobile users U . The set of directed links that connect the n-

odes of V is denoted as L. In addition, we assume that there are

M source-destination pairs, denoted by {(S(m), D(m))}Mm=1. For

each m = 1, ...,M , a data flow of rate r(m) ≥ 0 is to be sent

from the source node S(m) to the destination node D(m) over the

network.

The set of directed links L consists of both wired and wireless

links. The wired links connect routers in N and BSs in B, and is

denoted as Lw , {(s, d) | (s, d) ∈ L, ∀ s, d ∈ N
⋃

B}. Here
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(s, d) denotes the directed link from node s to node d. Assume each

wired link l ∈ Lw has a fixed capacity, Cl. Then the total flow rate

on link l is constrained by

M
∑

m=1

rl(m) ≤ Cl, ∀ l ∈ Lw, (1)

where rl(m) ≥ 0 denotes the nonnegative flow rate on link l for

commodity m.

The wireless links provide single-hop connections between the

BSs to the mobile users. For each wireless link, we assume there

are K orthogonal frequency subchannels. Thus, the set of wireless

links can be represented as Lwl , {(s, d, k) | (s, d, k) ∈ L, ∀ s ∈
B, ∀ d ∈ U , k = 1 ∼ K} with (s, d, k) being the wireless link

from node s to node d on subchannel k. For subchannel k, BS s ∈ B
applies the linear scalar precoder pkds ∈ C to the transmitted complex

unit-norm symbol of mobile user d ∈ U , so each mobile user can be

served by multiple BSs. Assuming that each mobile user treats the

interference from other BSs as noise, the total flow rate constraint on

wireless link l = (s, d, k) ∈ Lwl is expressed as

M
∑

m=1

rl(m) ≤ r̄l(p)

, log











1 +
|hk

ds|
2|pkds|

2

∑
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(s′,d′,k)6=l

|hk
ds′

|2|pk
d′s′

|2 + σ2
d











(2)

where p , {pkds | ∀ (s, d, k) ∈ Lwl}; hk
ds ∈ C is the channel tap

for the wireless link l = (s, d, k); σ2
d is the variance of AWGN noise

at mobile user d; I(l) ⊆ Lwl is the set of interfering links defined as

I(l) , {(s′, d′, k) | hk
ds′ 6= 0, (s, d, k) = l}. Each BS s ∈ B has a

total power budget p̄s ≥ 0, satisfying

K
∑

k=1

∑

d:(s,d,k)∈Lwl

|pkds|
2 ≤ p̄s, ∀ s ∈ B. (3)

Each node in the network should also follow the flow conservation

constraint, i.e., the total incoming flows of node v ∈ V equals the

total outgoing flow of that node,

∑

l∈In(v)

rl(m) + 1{S(m)}(v)rm

=
∑

l∈Out(v)

rl(m) + 1{D(m)}(v)rm,m = 1 ∼ M, ∀ v ∈ V (4)

where In(v) and Out(v) are, respectively, the set of links that goes

into node v and the set of links that comes out of node v.

In this paper, we are interested in maximizing the minimum flow

rate of all commodities, while jointly performing the following tasks

1): route M commodities from node S(m) to node D(m), m =
1 ∼ M ; and 2) design the linear precoder at each BS. This problem

can be formulated as

max
p,r

r (5)

s.t. r ≥ 0, rm ≥ r, rl(m) ≥ 0, m = 1 ∼ M, ∀ l ∈ L

(1), (2), (3), and (4),

where r , {r, rl(m), rm | ∀ l ∈ L, m = 1 ∼ M}. Prob-

lem (5) is difficult to solve because of the following reasons: (i) it

is a nonconvex problem due to the rate constraints on wireless links;

(ii) the bisection procedure for solving the max-min rate power allo-

cation (beamformer) design [22] cannot be applied here, due to the

existence of conservation constraints and the presence of multiple

subchannels; (iii) the size of the problem can be huge. In the fol-

lowing, we propose an efficient distributed algorithm to compute a

stationary solution of the problem (5).

3. A DISTRIBUTED ALGORITHM FOR THE JOINT

POWER ALLOCATION AND ROUTING PROBLEM

In this section, we will propose a distributed algorithm that solves

problem (5) to a stationary solution. The proposed algorithm is the

combination of two algorithms: 1) the max-min WMMSE algorithm

developed in [23] for minimum rate maximization in M -pair inter-

ference channel; 2) the ADMM algorithm that is used to distribu-

tively solve the multi-commodity routing problem. To achieve this

goal, we first exploit the following rate-MSE relationship

Lemma 1 [23] For a given l = (s, d, k) ∈ Lwl, r̄l(p) can be e-

quivalently expressed as

r̄l(p) = max
ul,wl

c1,l + c2,lp
k
ds −

∑

n=(s′,d′,k)∈I(l)

c3,ln|p
k
d′s′ |

2
(6)

where (c1,l, c2,l, c3,ln) are given by c1,l = 1 + log(wl) − wl(1 +
σ2
d|ul|

2), c2,l = 2wlRe{u∗
l h

k
ds}, and c3,ln = wl|ul|

2|hk
ds′ |

2.

Note that Lemma 1 reformulates r̄l(p) by introducing two extra sets

of variables u , {ul | l ∈ Lwl} and w , {wl | l ∈ Lwl}.

The term inside the maximization operator is the MSE for estimating

the message transmitted on link l. Given Lemma 1, we reformulate

problem (5) by replacing r̄l(p) in (5) with its MSE. We call such

new constraint a rate-MSE constraint. Then, the following problem

with two extra optimization variable sets u and w is solved instead:

max r (7)

s.t. r ≥ 0, rm ≥ r, rl(m) ≥ 0, m = 1 ∼ M, ∀ l ∈ L,

(1), (3), and (4),

M
∑

m=1

rl(m) ≤ c1,l + c2,lp
k
ds −

∑

n=(s′,d′,k)∈I(l)

c3,ln|p
k
d′s′ |

2,

∀ l ∈ Lwl. (8)

We can observe that for any given {r,p}, the optimal u (resp. w) for

(6) can be obtained while w (resp. u) is held fixed. Moreover, these

optimal solutions can be expressed in closed form for any l ∈ Lwl:

ul =

(

∑

(s′,d′,k)∈I(s,d,k)

| hk
ds′ |

2|pkd′s′ |
2 + σ2

d

)−1

hk
dsp

k
ds, (9)

wl =

(

1− (hk
dsp

k
ds)

∗ul

)−1

. (10)

These expressions suggest that the set of variables u and w can be

separately updated locally at each mobile user if the interference plus

noise and local channel state information are locally known. On the

other hand, when fixing u and w, the problem for updating {r,p}
is convex. Therefore it can be solved in polynomial time. Therefore,

we apply the alternating optimization technique to solve problem

(7); see the N-MaxMin Algorithm in Table 1 for detailed steps. The

following result states that the iterates {r(t),p(t)} generated by this

algorithm converge to the stationary solutions of problem (5).
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Network Max-Min WMMSE (N-MaxMin) Algorithm:

1: Initialization Generate a feasible set of variables {r,p}, and

let t = 1.

2: Repeat

3: u
(t) is updated by (9)

4: w
(t) is updated by (10)

5: {r(t),p(t)} is updated by solving (14) using Algorithm 1.

6: t = t+ 1.

7: Until Desired stopping criteria is met

Table 1. Network Max-Min WMMSE (N-MaxMin) Algorithm

Theorem 1 [24] The sequence {r(t),p(t)} generated by N-MaxMin

Algorithm converges to a stationary solution of problem (5). More-

over, every global optimal solution of problem (5) corresponds to a

global optimal solution of the reformulated problem (7), and they

achieve the same objective value.

We note that our algorithm in Table 1 and the convergence anal-

ysis in Theorem 1 carry over easily to the multi-antenna case as well.

3.1. An ADMM Approach for Updating {r,p}

Unlike the computation of u and w, the updates for {r,p} requires

solving convex optimization subproblems. We can use off-the-

shelve toolboxes, but this is not the most efficient. In the sequel,

we tailor the steps for updating {r,p} to make the entire algorithm

more scalable and suitable for distributed implementation. The key

is to decompose the problem into easy subproblems, each of which

is relatively easy to solve. The main difficulty here is to decouple

the flow constrains (4) for the nodes and the rate-MSE constraints

(8) for the wireless links.

To be more specific, the variables in the coupling constraints

(4) and (8) can be decomposed by introducing a few slack variables.

Consider the following slack variables: i) r̂
S(m)
m = rm and r̂

D(m)
m =

rm, m = 1 ∼ M ; ii) r̂sl (m) = rl(m) and r̂dl (m) = rl(m), ∀ l =
(s, d) ∈ Lw(or l = (s, d, k) ∈ Lwl). The flow rate conservation

constraints on node v ∈ V can then be rewritten as
∑

l∈In(v)

r̂vl (m) + 1{S(m)}(v)r̂
v
m

=
∑

l∈Out(v)

r̂vl (m) + 1{D(m)}(v)r̂
v
m, m = 1 ∼ M. (11)

In addition, for the rate-MSE constraint, we introduce sev-

eral copies of the transmit precoder on a given wireless link

l = (s, d, k) ∈ Lwl, i.e. pkd′s′,ds = pkds, l ∈ I(s′, d′, k). In-

tuitively, by doing such variable splitting, each variable pkd′s′,ds
will only appear in a single rate-MSE constraint. For a given link

l = (s, d, k) ∈ Lwl, its rate-MSE constraint only depends on the set

of precoders {pkds,d′s′ | ∀ (s′, d′, k) ∈ I(l)} as

M
∑

m=1

rl(m) ≤ c1,l + c2,lp
k
ds,ds −

∑

n=(s′,d′,k)∈I(l)

c3,ln|p
k
ds,d′s′ |

2. (12)

Moreover, for the analysis of the convergence result, another slack

variable r̂ is introduced such that r = r̂. For notational simplicity,

these equality relationship can be compactly expressed as

r̂ = r̃, p̂ = p̃, (13)

where r̃ and p̃ are concatenated vectors obtained from the original

flow rate and precoder variables, respectively; r̂ and p̂ are concate-

nated vectors of the slack variables.

Algorithm 1: ADMM for (14):

1: Initialize all primal variables r(0), r̂(0),p(0), p̂(0) (not nec-

essarily to be a feasible solution for problem (14)); Initialize

all dual variables δ(0), θ(0); set t = 0
2: Repeat

3: Solve the following problem and obtain r
(t+1), p̂(t+1):

max
r,p̂

Lρ1,ρ2(r, p̂, r̂
(t),p(t); δ(t),θ(t))

s.t. r ≥ 0, rm ≥ r, rl(m) ≥ 0, m = 1 ∼ M, l ∈ L,

(1) and (12) (15)

This step can be solved in parallel across all links.

4: Solve the following problem and obtain r̂
(t+1),p(t+1):

max
r̂,p

Lρ1,ρ2(r
(t+1), p̂(t+1), r̂,p; δ(t),θ(t))

s.t. (11) and (3) (16)

This problem can be solved in parallel across all nodes.

5: Update the Lagrange dual multipliers δ(t+1) and θ
(t+1) by

δ
(t+1) = δ

(t) − ρ1(r̂
(t+1) − r̃

(t+1)),

θ
(t+1) = θ

(t) − ρ2(p̃
(t+1) − p̂

(t+1)). (17)

6: t = t+ 1
7: Until Desired stopping criteria is met

Table 2. Summary of the proposed Algorithm 1

Hence, the updating step for {r,p} is equivalently expressed as

max (r + r̂)/2

s.t. r ≥ 0, rm ≥ r, rl(m) ≥ 0, m = 1 ∼ M, l ∈ L

(1), (12), (11), (3), and (13). (14)

It is important to note that the constraints of problem (14) (except

the linear equality constraints (13)) are now separable between two

optimization variable sets i) the tuple {r, p̂} and ii) the tuple {r̂,p}.

Additionally, the objective function is linear and separable over r and

r̂. Therefore the ADMM algorithm can be used to solve problem

(14). The resulting algorithm, listed in Table 2, is referred to as

Algorithm 1. Note that the partial augmented Lagrange function for

problem (14) is given by

Lρ1,ρ2(r, p̂, r̂,p; δ,θ) = r +
[

δ
T (r̂− r̃)−

ρ1
2
‖r̂− r̃‖2

]

+
[

θ
H(p̃− p̂)−

ρ2
2
‖p̃− p̂‖2

]

,

where ρ1 > 0 and ρ2 > 0 are, respectively, some constant coeffi-

cients for each of the linear equality constraints (13); δ and θ are

the Lagrange dual variables for (13). Moreover, by appealing to the

standard analysis for ADMM algorithm [16, 17], we can show that

Algorithm 1 converges to the optimal solutions of problem (14).

Theorem 2 [24] Every limit point of the sequence {r(t),p(t)} gen-

erated by Algorithm 1 is an optimal solution of problem (14).

It is important to note that steps (3)–(5) are all separable over

the nodes/links of the network, and each of them can be updated in

(semi)closed-form (see the journal version [24] for details). More-

over, when the following assumptions are made, the entire algorithm

can be carried out in a distributed manner: i) each mobile user has lo-

cal channel state information from all interfering BSs; ii) there exists
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Fig. 1. The minimum rate achieved by N-MaxMin algorithm and the
greedy heuristic algorithm for different number of commodities. We have
p̄ = 20dB.

a master node which can communicate with the soure/destination n-

ode of each commodity; and iii) the destination node of each link

performs the updating step for that link and communicates the result

to the neighboring nodes. Condition i) allows u and w to be updat-

ed at the mobile users, while conditions ii)-iii) allow for distributed

implementation of steps 3)–5) in Table 2.

4. SIMULATION RESULTS

In this section, we report numerical results on the performance of

the proposed algorithms when applied to a HetNet with 57 BSs

and 11 network routers within the area of 1200m × 1600m. The

capacity of each wired link is given in the range between 2Mnat-

s/s to 1Gnats/s for both directions. The number of subchannels is

K = 3 and each subchannel has 1 MHz bandwidth. The power

budget for each BS is chosen equally by p̄ = ps, ∀ s ∈ B, and

σ2
d = 1, ∀ d ∈ U . The wireless links follow the Rayleigh distribu-

tion with CN(0, (200/dist)3), where dist is the distance between

BS and the corresponding user. The source (destination) node of

each commodity is randomly selected from network routers (mobile

users), and all simulation results are averaged over 100 randomly s-

elected end-to-end commodity pairs. Below we refer to one round

of the N-MaxMin iteration as an outer iteration, and one round of

Algorithm 1 for solving (r,p) as an inner iteration.

In the first experiment, we assume that all mobile users are

served by BSs within 300 meters and are interfered by all B-

Ss. For this problem, the parameters of N-MaxMin algorithm

are set to be ρ1 = 0.1 and ρ2 = 0.001; the termination cri-

terion is
(r(t+1)+r̂(t+1))−(r(t)+r̂(t))

r(t)+r̂(t)
< 10−3 and max{‖r̃(t) −

r̂
(t)‖∞, ‖(p̃(t))2 − (p̂(t))2‖∞}} < 5 × 10−4, where (p̃(t))2 rep-

resents elementwise square operation. We compare the performance

of the proposed algorithm with a greedy heuristic approach, in

which each mobile user u ∈ U is served by a single BS via a single

subchannel. Such serving BS and the subchannel is chosen greedily

as the one with the strongest channel strength among all BSs and all

channels for user u ∈ U . After BS-user association is decided, each

BS uniformly allocates its power budget to all tones, and subsequent-

ly to all users occupying the same tone. With the obtained power

allocation and BS-user association, the capacities of all wireless

links are known and fixed, so the minimum rate of the commodities

can be optimized by solving a standard multi-commodity routing
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Fig. 2. The minimum rate performance and the required number of iterations
for the proposed N-MaxMin algorithm. In [(a)(b)] p̄ = 10dB and in [(c)(d)]
p̄ = 20dB. In [(a)(c)], the obtained minimum rate versus the iterations of
N-MaxMin is plotted. In [(b)(d)], the required number of inner ADMM iter-
ations is plotted versus the iteration for the outer N-MaxMin algorithm.

problem with known channel capacities. In Fig. 1, we show the

minimum rate performance of different algorithms when p̄ = 20dB

and M = 5 ∼ 30. We observe that the minimum rate achieved

by the N-MaxMin algorithm is more than twice that of the heuristic

algorithm. This suggests that proper power allocation and BS-user

association is needed for problem (5).

In the second set of numerical experiments, we evaluate the pro-

posed N-MaxMin algorithm using different number of commodity

pairs and different power budgets at the BSs. Here we use the same

settings as in the previous experiment, except that all mobile users

are interfered by the BSs within a distance of 800 meters, and that we

set ρ2 = 0.005 (resp. ρ2 = 0.001) when p̄ = 10 dB (resp. p̄ = 20
dB). The minimum rate performance for the N-MaxMin algorithm

and the required number of inner iterations are plotted in Fig. 2.

Due to the fact that the obtained {r,p} is far from the stationary

solution in the first few outer iterations, there is no need to complete

Algorithm 1 at the very beginning. Hence, we limit the number of

inner iterations to be no more than 500 for the first 5 outer itera-

tions. After the early termination of the inner Algorithm 1, we use

the obtained p to update u and w by (9) and (10), respectively.

In Fig. 2(a)–(b), we see that when p̄ = 10 dB, the minimum rate

converges at about the 10th outer iteration when the number of com-

modities is up to 30, while less than 500 inner iterations are needed

per outer iteration. Moreover, after the 10th outer iteration, the num-

ber of inner ADMM iterations reaches below 100. In Fig. 2(c)–(d),

the case with p̄ = 20dB is considered. Clearly the required number

of outer iterations is slightly more than that in the case of p̄ = 10dB,

since the objective value and the feasible set are both larger. How-

ever, in all cases the algorithm still converges fairly quickly.

In summary, simulation results show that the proposed N-

MaxMin algorithm significantly outperforms the greedy heuristic

in term of the achieved min flow rate. Furthermore, all steps of

Algorithm 1 have (semi)closed-form solutions, and they can be

independently computed in parallel across all nodes/links of the

considered network.
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