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ABSTRACT
Exposed-datapath architectures yield small, low-power pro-
cessors that trade instruction word length for aggressive
compile-time scheduling and a high degree of instruction-
level parallelism. In this paper, we present a general-purpose
parallel accelerator consisting of a main processor and eight
symmetric clusters, all in a single core. Use of a lightweight
and memory-efficient application programming interface al-
lows for the first high-performance program executing both
sequential and data-parallel code on the same TTA processor.
We use the processor for LDPC encoding, a popular method
of forward error correction. Demonstrating the flexibility
of software-defined radio, we benchmark the processor with
two programs, one which can handle almost any sort of LDPC
code, and another which is optimized for a specific standard.
We achieve a throughput of 5 Mb/s with the flexible program
and 92 Mb/s with the standard-specific one, while consuming
only 95 mW at a clock frequency of 1175 MHz.

Index Terms— parallel computing, Open Computing
Language (OpenCL), transport-triggered architecture (TTA),
software-defined radio (SDR), low-density parity check codes
(LDPC)

1. INTRODUCTION

As the era of Moore’s law draws to a close, we must look for
novel ways to accelerate parallel workloads, especially within
the power constraints of embedded systems. We are witness-
ing a significant increase in the number and diversity of pro-
cessors used to realize the computational needs of today’s
products [1]. For example, contemporary smartphone and
tablet system-on-chip (SoC) designs feature CPUs, special-
purpose processors such as graphics processing units (GPUs),
digital signal processors (DSPs), and fixed-function accelera-
tors for communications, video, and audio processing [2]. We
propose a TTA processor that exploits instruction-level paral-
lelism (ILP) in sequential code, as well as data parallelism in

parallel programs, meant to serve as a co-processor in such
systems. Although it is suited for general-purpose parallel
workloads, we demonstrate the processor’s capabilities in a
communications role.

LDPC codes are a popular method of capacity-approaching
forward error correction (FEC) that have been adopted in
standards such as IEEE 802.11n and DVB-S2 [3]. We desire
to use flexible LDPC encoding on battery-powered plat-
forms transmitting a large amount of data wirelessly, such as
portable medical imaging devices. TTA architectures have
already been designed for FEC decoding, but for our applica-
tion data transmission takes precedence over reception, and
flexibility poses a more challenging encoding problem [4, 5].
FEC schemes are usually implemented with fixed-function
hardware accelerators, but this results in slow time-to-market,
inflexible designs, and may consume a large area when many
different accelerators are needed on the same platform. As
an alternative, we implement LDPC encoding in software
on our processor. Generalized LDPC encoding is a fitting
demonstration of our processor’s capabilities because it in-
volves common, parallelizable operations in sparse and dense
linear algebra. We use no application-specific hardware,
maintaining processor flexibility.

To our knowledge, this is the first implementation of
LDPC encoding on a TTA processor. Additionally, we have
improved on existing implementations of vector TTA proces-
sors and the OpenCL parallel computing standard so that we
may efficiently run sequential C and parallel OpenCL code
on the same core, avoiding the commonly observed commu-
nication overhead across cores and address spaces [6]. We
have carefully constructed OpenCL kernels which process
sparse and dense matrices with improved parallelism. We test
our processor on a general algorithm that is flexible across
many LDPC codes, as well as a standard-specific algorithm
that achieves higher throughput.
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2. OVERVIEW OF LDPC ENCODING

Compared to turbo codes, LDPC codes admit considerably
higher encoding complexity [7, 8]. A binary LDPC code is
represented by a sparse parity check matrix H , which en-
codes a set of homogeneous linear equations [9]. The en-
coding problem is to find the codeword satisfying the system
for each source vector. While it is possible to formulate a
generator matrix and encode by dense matrix multiplication,
a more efficient algorithm was found using mostly sparse op-
erations [7]. The algorithm works on all codes which are in
approximate lower-triangular (ALT) form, meaning H can be
made lower-triangular by removing its last g rows, where g
is called the gap of the code. Partitioning H by the gap once
along the rows, and once along the columns, we are left with
six sub-matrices:

Hm×n =

(
A(m−g)×(n−m) B(m−g)×g T(m−g)×(m−g)
Cg×(n−m) Dg×g Eg×(m−g)

)

2.1. General encoding

The algorithm has two phases: preprocessing for a given
code, and encoding each packet. In the preprocessing phase,
we compute the matrix φ−1 = (−ET−1B + D)−1. In the
encoding phase, we form a packet x = (s, p1, p2), where s is
the source vector and (p1, p2) are the parity bits. The parity
check equation HxT = 0T is equivalent to the following
system:

AsT +BpT1 + TpT2 = 0 (1)

(−ET−1A+ C)sT + φpT1 = 0 (2)

The solutions for the parity bits are as follows:

pT1 = −φ−1(−ET−1AsT + CsT )

pT2 = −T−1(AsT +BpT1 )

Since T is lower-triangular, multiplication by T−1 may
be efficiently solved by forward substitution, and in the finite
field GF (2), we ignore the negations [10]. For each packet,
the algorithm requires five sparse matrix-vector multiplica-
tions, one dense matrix-vector multiplication, two dense vec-
tor additions, and two sparse forward substitutions.

2.2. Structured codes

To further simplify the encoding problem, it is common to
use codes with special repetitive structures [11]. For exam-
ple, quasi-cyclic LDPC codes (QC-LDPC) consist of cyclic
permutation matrices of a regular size z. For these codes,
matrix-vector multiplication is equivalent to the accumulation
of rotated sub-vectors of the vector multiplicand. It is also
common to choose codes such that φ is the identity matrix,
avoiding dense matrix multiplication entirely. In this paper,
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Fig. 1. Processor architecture with vector data memory access.

we first demonstrate the flexibility of SDR on a general en-
coding program, capable of supporting many different stan-
dards, and then demonstrate higher throughput with a pro-
gram tailored to a specific structured code.

3. PROCESSOR ARCHITECTURE

As with other very long instruction word (VLIW) processors,
TTA processors allow for instruction-level parallelism by en-
coding multiple parallel operations into a single processor in-
struction. TTA takes this approach a step further by encoding
the movement of data between function units (FUs) into the
instruction, affording numerous advantages in performance
and hardware complexity [10, 12]. Firstly, the compile-time
scheduler is able to reduce latency and register file pressure
by routing data from the output of one FU to the input of
the next, skipping the register file in what is called software
bypassing. Secondly, datapath exposure enables the use of
a large number of small register files with few ports, drasti-
cally reducing their complexity. Thirdly, elimination of run-
time control tasks such as register renaming results in small,
power-efficient processors [12].

3.1. Symmetric clusters for parallel code

Our processor adds data parallelism to TTA by including
eight symmetric clusters and a vector load-store unit (LSU)
for wide memory access, as seen in figure 1. We can load
eight 32-bit words from data memory in parallel, and process
them in the clusters. The LSU can also be used for scalar
accesses down to the byte level. The results can be stored in
parallel, or quickly transferred to the main processor for later
use. The clusters need not be confined to the single instruc-
tion, multiple data (SIMD) model when it is more efficient to
schedule them sequentially, or to use different operations in
each cluster. Eight transport buses allow data to be transferred
from cluster registers to main processor registers.

In the past, vector TTA processors used interleaved mem-
ory, which increases latency and hardware complexity [4, 13].
We have found that many signal processing applications can
be written to use linear memory access, so the wide 256-bit
data words of our simpler memory hierarchy are a fast and
cost-effective solution. Another weakness of previous designs
was that clusters could not send addresses to the vector LSU,
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Table 1. Function units and buses of the processor. Multiply
cluster FUs by 8 for total.

Resource ALU Mult. FPU RF∗ Bus†

Cluster 2 1 1 3 3
Main proc. 6 4 4 9 6

Total 22 12 12 33 38‡
?The largest register file has three 32-bit registers.
†We can perform one parallel transport operation for each bus.
‡This includes 8 transport buses.

resulting in an inefficient schedule. We solve this problem by
connecting all clusters to the 32-bit serial read and write ports
on the LSU, as well as the triggering address port.

3.2. Main processor for sequential code

A few vector TTA processors have been proposed, but ours
differs in that it is also meant to process sequential code
through the larger main processor. In past designs, it was
assumed that a PCI Express bus could transport data to an ap-
plications processor when sequential execution was necessary
[4]. In our previous work, we have found that transferring
data between parallel and sequential processors was a signifi-
cant bottleneck, particularly in heterogeneous CPU and GPU
systems [6, 14]. Our design solves this problem by executing
both types of code on the same chip, in the same address
space, reducing data transfer overheads between sequential
and parallel code.

Both the clusters and the main processor can trigger multi-
ple FUs from table 1 in parallel, while pipelining operations to
the multipliers, arithmetic and logic units (ALUs), and float-
ing point units (FPUs). For a more flexible architecture, we
include parallel 32-bit FPUs to support future applications.
If the need arises, the modular nature of TTA allows us to
quickly add or remove hardware from existing designs.

4. APPLICATION CODE AND OPENCL API
IMPLEMENTATION

In this section, we describe how our efficient application code
was tailored to our architecture and compiler. We also de-
scribe our implementation of the OpenCL application pro-
gramming interface (API) for TTA processors, which makes
efficient use of our memory model. For our application, we
wish to support a wide range of codes, so we provide more ex-
planation for the general encoding algorithm, but we briefly
describe the necessary modifications to optimize for a com-
mon standard. We provide some initial performance analysis
to show the benefits of our optimizations. Our testing method-
ology is described in §5.2.

Program 1 OpenCL kernel for binary sparse matrix-vector
multiplication, called for each matrix element.

k e r n e l vo id m u l t i p l y ( g l o b a l c o n s t i n t *mat ,
c o n s t i n t num_rows , g l o b a l c o n s t u c h a r * v_in ,
g l o b a l u c h a r * v_ou t ) {

i n t x , y , i d ;
x = g e t _ g l o b a l _ i d ( 1 ) ; y = g e t _ g l o b a l _ i d ( 0 ) ;
i d x = mat [ y + x * num_rows ] ;
a t o m i c _ x o r ( ( g l o b a l u i n t * ) ( v_ou t + y ) ,
( u i n t ) v_ in [ i d x ] & ( i d x >= 0 ) ) ; }

4.1. Sparse matrix-vector multiplication

Our tests show that sparse matrix-vector multiplication is the
most expensive operation in LDPC encoding, accounting for
73 percent of the total execution time after optimization. We
surveyed existing methods developed for GPUs, but they in-
volved loops and conditionals [15]. These are problematic for
our architecture, which controls all clusters on the same core.
Instead, we choose as our OpenCL work item a single element
of the matrix, using a two-dimensional NDRange, and accu-
mulating the partial products in parallel, as seen in program 1.
Binary sparse matrices are encoded as an array of nonzero in-
dices. We use the ELLPACK sparse matrix format because it
preserves row position [15]. The number -1 is used to encode
empty elements in the sparse matrix, so we mask away these
elements with the operation & (idx > 0), where idx is the in-
dex retrieved from the sparse matrix. Finally, all matrices are
stored in column-major order so that eight elements in a col-
umn may be fetched in parallel as linear memory, their results
stored in parallel. The program alternates between parallel
linear memory accesses and sequential random accesses, in
which non-loading clusters may perform other work, demon-
strating multiple instruction, multiple data (MIMD) freedom
in workload partitioning.

4.2. Other operations

We implement vector addition and dense matrix multiplica-
tion in the same style, this time using the column-major dense
matrix format. For these operations, four unsigned char data
types are loaded as a single 32-bit unsigned int, reducing
the number of required memory accesses by a factor of four.
Zero-padding is used to avoid checking matrix boundaries.
With vector accesses, we may load 32 packed unsigned char
values at once. This technique accelerates dense matrix mul-
tiplication by a factor of 2.5.

Sparse forward substitution exhibits a high degree of data
dependency, making it a poor choice for parallelization. We
implement this stage in manually-unrolled C code, encoding
the XOR operations at compile time instead of accessing the
sub-matrix T , and improving opportunities for ILP. On our
processor, manual unrolling accelerates forward substitution
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by a factor of 16.5 over a naive implementation.

4.3. Standard-specific methods

We also test an alternative algorithm optimized for the IEEE
802.11n standard with a sub-block width of 27 bits. We do not
include standard-specific hardware, demonstrating the flexi-
bility of the processor by implementing these optimizations
using the existing FUs.

QC-LDPC codes accelerate matrix-vector multiplication,
as explained in §2.2. We use a dense matrix to encode sub-
block rotations, encoding empty sub-blocks with -1, as in
§4.1. We multiply by A using an OpenCL kernel similar to
program 1. Because the other operations are inexpensive for
this QC-LDPC code, they do not warrant the overhead of
launching OpenCL kernels. Additional optimizations were
made to forward substitution based on the staircase structure
of the T sub-matrix. Finally, for these codes, φ is the identity
matrix, so we avoid dense matrix-vector multiplication.

4.4. Efficient OpenCL implementation

OpenCL is a cross-platform standard for parallel program-
ming [16]. Targeting the clusters with parallel program ker-
nels allows for easier alias analysis and workload partitioning
[17]. However, control code for the OpenCL kernels proved
to be very expensive on our statically-scheduled architecture.
To solve this problem, we eliminated error checking in com-
mon subroutines and omitted redundant API functionality.

OpenCL usually calls for separate private, local, and
global address spaces, each addressable from different sets of
parallel processing elements [16]. Our processor is designed
to switch between serial and parallel execution frequently, so
we store all data in the same physical address space. Every
OpenCL buffer is initialized with an array created in C, and
when a call is made to read a buffer into its initializing array,
the API copies nothing. In this way, we tremendously reduce
the cost of switching between C and OpenCL code.

5. EXPERIMENTAL RESULTS

In this section, we report area, power, and timing estimates
for the hardware, as well as throughput for the software, and
compare to implementations on field programmable gate ar-
rays (FPGAs).

5.1. Hardware statistics

We obtained power, area, and timing estimates from Synop-
sis Design Compiler E-2010 using 45nm technology. The
processor core and memory interface were synthesized from
VHDL. Because of the wide variation among possible data
and instruction memory hierarchies, which depend on the ap-
plications desired, we do not report their cost. The processor
consists of 323× 103 gates, consuming an estimated 95 mW

Table 2. Comparison of LDPC encoder implementations.

Technology Method Length Gap Mb/s∗

Prop. TTA 1175Mhz Flexible 648† 27† 5
Prop. TTA 1175Mhz Specific 648† 27† 92
FPGA 200 MHz [19] Flexible 9612 182 17

FPGA 143 MHz [8] Flexible 2000 2 22
∗Here we report the number of source bits processed per second.
†Our code comes from the IEEE 802.11n standard.

at 1175 MHz. This is equivalent to .08 mW/MHz, far lower
than contemporary smartphone CPUs and GPUs, for which
we might expect .5 mW/MHz [6, 18]. The simplified control
hardware of TTA is both area- and power-efficient.

5.2. Software simulation

Software results come from an instruction cycle-accurate sim-
ulator [10]. Throughput calculations assume data and instruc-
tions may be fetched from static memory. We compare our
processor running both the flexible and standard-specific en-
coding programs against FPGA implementations from the lit-
erature, as shown in table 2. FPGAs are a popular platform
for communications processing, and are the most significant
rival to application-specific integrated processors (ASIPs) in
reconfigurability and performance. Due to the vast number of
proposed LDPC codes, it is difficult to compare encoder im-
plementations, so we focused on flexible encoders tested on
codes of rate 1

2 . Even still, differences in code gap size af-
fect performance considerably. We achieve a sizable fraction
of the throughput of FPGAs using a flexible processor that
meets the power and area constraints of embedded systems,
and 5 Mb/s is more than enough for our sensor applications.
We also observe a throughput of 92 Mb/s with the standard-
specific program, satisfying wireless transmission needs for a
wider range of applications.

6. CONCLUSIONS

We presented a flexible, power- and area-efficient processor
capable of accelerating a wide variety of parallel applications,
and explained our techniques for generating efficient system-
and application-level software for OpenCL-based LDPC en-
coding. We have shown that the processor is capable of meet-
ing our performance requirements on two different programs
without application-specific hardware.
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