
SIMPLIFIED ADDRESSING SCHEME FOR MIXED RADIX FFT
ALGORITHMS

Cuimei Ma1, Yizhuang Xie1, He Chen1, Yi Deng2, Wen Yan1

1Beijing Institute of Technology, Beijing, 100081, China;

2Virginia Polytechnic Institute and State University, Arlington, VA 22044 USA

ABSTRACT

A mixed radix algorithm for the in-place fast Fourier
transform (FFT), which is broadly used in most embedded
signal processing fields, can be explicitly expressed by an
iterative equation based on the Cooley-Tukey algorithm.
The expression can be applied to either decimation-in-time
(DIT) or decimation-in-frequency (DIF) FFTs with ordered
inputs. For many newly emerging low power portable
computing applications, such as mobile high definition
video compressing, mobile fast and accurate satellite
location, etc., the existing methods perform either resource
consuming or non-flexible. In this paper, we propose a new
addressing scheme for efficiently implementing mixed
radix FFTs. In this scheme, we elaborately design an
accumulator that can generate accessing addresses for the
operands, as well as the twiddle factors. The analytical
results show that the proposed scheme reduces the
algorithm complexity meanwhile helps the designer to
efficiently choose an arbitrary FFT to design the in-place
architecture.

Index Terms—Fast Fourier Transform, mixed radix,
address generation, in place, arithmetical complexity.

1. INTRODUCTION

Fast Fourier transform (FFT) algorithms play a key role in
improving the feasibility of discrete Fourier transform
(DFT), which is broadly used in most digital processing
applications. For practical FFT uses, there are radix-2,
radix-4 and split-radix [1] FFTs. Meanwhile, the research
on radix-2k [2] FFT has resulted in the instantiation of such
methods as radix-22 [3], radix-23 [4], and even radix-24 FFT
[5]. Although the derivation and programming are intuitive
for radix-2k FFT, the drawback is that the number of points
has to be restricted to powers of two or four, which restricts
its application in resource-limited portable computing
scenarios.

Recently, an optimal choice for the FFT size is in
demand and many non-power-of-two FFTs, such as 3! and
6!- point FFT, have been studied [6,7]. However, those
methods are all in radix-q×2k FFTs [8], where q is prime,

such as 3, 5, and 7, et al. Because the mixed radix FFT can
be used in general scenarios, it becomes practical and useful.
Some mixed radix FFT algorithms are studied, such as
radix-2/4 [9,10] and radix-2/2! FFTs. They are based on
radix-2 FFT. However, if the padding-zero method is used
to satisfy the radix-2!FFT, it will consume a larger amount
of memory than the mixed radix FFT. Since the memory
cost is a significant part of the FFT processor, minimizing
the necessary size is an effective way for the area reduction.
Therefore, arbitrary mixed radix FFTs problems are
discussed in [11, 12].

Two methods, the pipelined and memory-based
architectures [13, 14], have been proposed for different
applications in various FFT processors. Although much
higher throughput than memory based designs, the pipeline
architectures have a larger area cost. Therefore, the in-place
strategy [15] is taken and only one memory with N complex
words is needed.

However, the in-place strategy has a complex design
circuit, which has to generate addresses for both operands
and twiddle factors. Demuth [11] proposed a nested loop
index generation algorithm to index inputs and outputs of
FFT stages and another way to index twiddle factor
exponents. This method needs many parameters to get the
address, which is difficult to implement using hardware.
Hsiao [12] gave the index mapping method for the
generalized mixed radix algorithm with some complex
modulo operations. A bit-level representation of the
accessing rule was mentioned by Sorokin [16], which is
used in different processing stages for a radix-2/4 FFT. In
this paper, we will extend it to an arbitrary mixed radix FFT.

An iterative expression that is applied to radix-r!/r! in-
place architecture is derived. The N data are stored in RAM
and the N twiddle factors are in ROM. An accumulator is
set to make the accessing address map easily to the
hardware circuits and there is no modulo operation. The
illustrative example is based on radix-2/3 decimation-in-
time (DIT) in-place 12-point FFT. By this method, an
appropriate FFT size is chosen to minimize the memory
size and a simplified address control is designed.

2. REVIEW OF MIXED-RADIX ALGORITHM

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 8410

The N-point DFT of an N-point sequence)}({ nx ,
1

0

0 1() () ,
N

kn
N

n
X k x n W k N

−

=

= ≤ ≤ −∑ (1)

where 2exp(/)kn
NW j kn Nπ= − , and 1j = − .

Suppose that the FFT size satisfies 1 2
1 2
s sN r r= × , where

1r and 2r are two radices, 1s and 2s are the corresponding
integer powers, and a parameter s is 1 2s s s= + . We
assume that the algorithm uses 1s radix- 1r stages followed
by 2s radix- 2r stages. According to Cooley-Tukey
algorithm, the time and frequency indices, i.e. n and k , are
analyzed. The expressions for both n and k with s digits
in terms of 1r , 2r , 1s and 2s are obtained as follows.

1 2 1 1

1 1

1

1

1 2 2 2

2 2

2

2

1 1
1 2 1 1 2 1 1

1 1
1 1 1 1 0

1 1
1 2 1 1 2 1 2

1 1
2 1 2 1 0

...

... ,

...

... ,

s s s s
s s s

s
s

s s s s
s s s

s
s

n r r n r r n r n

r n r n n

k r r k r r k r k

r k r k k

−
− +

−
−

−
− +

−
−

⎧ = × × + + × × + ×⋅
⎪
⎪ + × + + × +⎪
⎨

= × × + + × × + ×⎪
⎪

+ × + + × +⎪⎩

(2)

where if 10 1i s≤ ≤ − , 10 1[,]in r∈ − , else 20 1[,]in r∈ − ;
if 20 1i s≤ ≤ − , 20 1[,]ik r∈ − , else 10 1[,]in r∈ − .

For brevity, assume that 1
i

ic r= when 10 1, , ...,i s= ,
1

1 1 2
s i

s ic r r+ = × when 21 1, ...,i s= − . 2' i
ic r= when 20, ...,i s= ,

2

2 2 1' s i
s ic r r+ = × when 11 2 1, , ...,i s= − . Therefore, Eq.(2) is

rewritten as

1 1 2 2 1 1 0 0

1 1 2 2 1 1 0 0

... ,
' ' ... ' ' .
s s s s

s s s s

n c n c n c n c n
k c k c k c k c k

− − − −

− − − −

= × + × + + × + ×⎧
⎨

= × + × + + × + ×⎩

(3)

For notational convenience, Eq. (3) can be written as

1 2 2 1 0

1 2 3 2 1 0

(...) ,

(...) .

s s mixed radix

s s mixed radix

n n n n n n

k k k k k k

− −

− −

⎧ =⎪
⎨

=⎪⎩

(4)

When Eq. (3) is substituted into Eq. (1), we
decompose N-point DFT into s iterations and the mth
(1≤m ≤ s) iteration is as follows.

0 1 1 1 2 0

1

1 0 1 2 1 0
0

'
()

(... ...)

(... ...) s m s m

s m

m m s m s m

r
k c n

m m s m s m N
n

x k k k n n n

x k k k n n n W − −

−

− − − − −

−

− − − − −
=

= ∑
 (5)

where 1 2' (,)r r r∈ . When m satisfies
21 m s≤ ≤ , 2'r r= ,

otherwise 1'r r= .
From Eq. (5),

1 0 1 2 1 0(... ...)m m s m s mx k k k n n n− − − − −
 denotes one

of 'r operands for radix- 'r butterfly in the mth stage and
0 1 1 1 0(... ...)m m s mx k k k n n− − − represents the butterfly output.

Because the in-place algorithm is used, we can analyze
0 1 1 1 2 0 () (... ...)m s m s m mixed radixAddr m k k k n n n− − − − −= to explore the

address generations in order to get the operands.

Table 1. Variable digit with cycles in each stage.

Stage Address representation Variable digit

1 m s≤ <
 radixmixedmsmsm nnnkkk)......(021110 −−−−− 1mk −

s
 0 1 2 1(...)s mixed radixk k k k − 1sk −

Table 2. Different radix of iC in each stage.

Stage 0 1(,...,)iC i s= − Radix

21 ()m m s≤ ≤ 11 2, , ... sC C C 1r

1 10 1 2 1, , , ...,s s sC C C C+ + − 2r

2()m s m s< ≤ 1 1 1 0, ..., ,sC C C− 1r

1 1 11 2 2 1, , , ..., ,s s s s sC C C C C+ + − − 2r

Furthermore, ()s m s mk c nW − −× is the corresponding twiddle

factor. We store the twiddle factors 2exp(/)iW j i Nπ= − in a
lookup table sequentially, where i ranges from 0 to N-1.
We can get them from the lookup table by analyzing the
exponent part, i.e. ()s m s mk c n− − .

The following section will present the addressing
scheme by the iteration representation of n and k in the
mth stage.

3. THE PROPOSED ADDRESSING SCHEME

3.1. Address generation for operands

The 'r consecutive addresses for the 'r operands of radix-
'r butterfly can be obtained in 'r clock cycles. For every

stage, we should find which digit is variable from 0 to 1'r −
and the other digits are constant in

0 1 1 1 2 0(... ...)m s m s m mixed radixk k k n n n− − − − − . The variable digit for
every stage is listed in Table 1.

Assume an accumulator, which is represented by

1 2 3 2 1 0(...)s s s mixed radixACC C C C C C C− − −= for mapping the data

addresses. iC is the ith digit, 1sC − is the most significant
digit and 0C the least significant digit. Only 0C keeps
varying with cycles, similar to 1mk − at the mth stage, just as
shown in Table 1.

Because each digit in Addr is either 1r or 2r , iC in
ACC is either 1r or 2r . Therefore, there list the value of

iC in Table 2. The relationship between Addr and ACC

8411

2−sC ...1−sC 0C... 1CmsC − 1−−msC 2−−msC 3−−msC

1k ...0k 1−mk ... 0n1−−msn 2−−msn 3−−msn 4−−msn

)(mACC

2−sC ...1−sC 0C ... 1CmsC − 1−−msC 2−−msC 3−−msC

)(mAddr

Fig.1. Addresses generating for N-point FFT using ACC
in the

mth stage.

1stage

0
1
2
3
4
5
6
7
8
9
10
11

000
001
010
011
020
021
100
101
110
111
120
121

n)(
)(

232
012 CCC

000
100
001
101
002
102
010
110
011
111
012
112

n↔

0
6
1
7
2
8
3
9
4
10
5
11

Address

)(
)(

223
120 CCC

0
6
1
7
2
8
3
9
4
10
5
11

n

2stage

000
001
010
011
020
021
100
101
110
111
120
121

000
010
001
011
002
012
100
110
101
111
102
112

n↔

0
3
1
4
2
5
6
9
7
10
8
11

）（223
102)(CCC n)(

)(
232

012 CCC

0
3
1
4
2
5
6
9
7
10
8
11

3stage

000
001
002
010
011
012
100
101
102
110
111
112

000
001
002
010
011
012
100
101
102
110
111
112

n↔

0
1
2
3
4
5
6
7
8
9
10
11

n)(
)(

223
012 CCC

0
1
2
3
4
5
6
7
8
9
10
11

)(
)(

223
012 CCC

Address AddressACC ACC ACC

Fig.2. Access for operands of 12-point radix2-3 FFT.

in the mth stage is illustrated in Fig.1.
Fig.1 shows that the address of the mth stage of FFT is

obtained from ACC . The third row is the address, which is
represented using time and frequency indices, i.e. n and k .
Fig.2 illustrates the addressing scheme for 12-point FFT, i.e.
1 3r = , 2 2r = , 1 1s = , 2 2s = . In the first column, n

represents the number of the memory depth from 0 to 11
and also means the time sequence. When the stage of the
FFT is the first, 2 1 01 232() () ()ACC C CC= = . According to
Fig.1, 0C is shifted to the left of the 2C , and we obtain that

0 2 11 223() () ()Addr C C C= = . 1()Addr is variable as shown
in column 3 and the addresses of the operands in memory
are achieved by the conversion the mixed-radix numbers to
the decimal representations and the values of n are listed in
column 4. For example, the first radix-2 butterfly
computation, the addresses of the two operands are 0 and 6
separately. The outputs are stored in the same addresses.
For the next two stages, ACC(2) = (C2C1C0) = (232) and

2 1 03 223() () ()ACC C CC= = . 2 0 12 223() () ()Addr C C C= = by
shifting 0C to the left of 1C and 3 3() ()Addr ACC= .
Therefore, we can get the right addresses of the operands
according to Fig.1.

3.2. Address generation for twiddle factors

Substitute the expression k in Eq.(2) into ()s m s mk c nW − −× , and
the following expression is obtained.

Table 3. The expression of β in each stage.

Stage Accessing address, ((s-1)-digit)

1 000 00(...) mixed radix

2()m m s≤ < 1 2 10 00(... ...)s m s m s mixed radixC C C− + − + −

s 1 2 3 1(...)s mixed radixCC C C −

W
(r1
s
1
−1
×r2
s
2 ×ks−1+...+r2

s
2 ×ks2+r2

s
2 −1×ks2−1+...+r2

1×k1+k0)(cs−m×ns−m)

=W
cs−mns−m c'i ki

i=m

s−1

∑

Part1
! "# $##W

cs−mns−mc'm−1km−1

Part2
! "## $##W

cs−mns−m c'i
i=0

m−2

∑ ki

Part3
! "# $##

 (6)

There are three parts of the expression. We describe
them separately and analyze which part is used to get the
address of twiddle factor.

Part 1: We obtain that
1

1
'

s

s m s m i i
i m

c n c k

W

−

− −
=
∑

= in each stage.
 Part 2: 's m s m i ic n c kW − − denotes 'r -point DFT matrix, for
example, 11 1 1[;]− is a 2-point DFT matrix. Different
stages use different 'r -point DFT matrix. When 21 m s≤ ≤ ,
it is a 2r -point DFT matrix; otherwise, it is a 1r -point DFT
matrix.
 The first two parts have nothing to do with the address
of twiddle factor, so we can get the address from part 3.

We suppose a parameter
2

0
' '

m

i i
i
c kβ

−

=

=∑ when

2 3, , ...,m s= , and 0'β = when 1m = . 'β can be
expressed by 1 2 2 1(...)s m s m s s mixed radixC C C C− + − + − − −

 according to

ACC when 2 3, , ...,m s= . Let 's mcβ β−= × . The Table 3
lists the expression β in each stage.

Suppose 0 1 2 3 2 1 (...)reverse s s s mixed radixACC C CC C C C− − −= and it
means the digit reverse of the ACC . Table 3 shows that the
expression of β is related to reverseACC . β can be
represented in VHDL when 2 3, , ...,m s= as follows :

[]2 0 2 1() (())& (() ())reversem ACC m downto zeros s downto mβ <= − − − ,
where zeros denotes a zero vector.

Because 0 1 1, , , 's mn r− = ⋅⋅⋅ − in part 3, the addresses of
the 'r twiddle factors for a butterfly unit in stage m can be
acquired by s mn − multiplication with ()mβ , as Eq.(7). The
accessing addresses of twiddle factors are obtained.

0 0
1

1 1

, ;
(), ;

()
...
(') (), ' .

s m

s m
twi

s m

n
m n

Addr m

r m n r

β

β

−

−

−

=⎧
⎪ =⎪

= ⎨
⎪
⎪ − × = −⎩

 (7)

Fig.3 shows the accessing address for twiddle factors
of 12-point FFT. The column n is the same meaning as
that is in the first column in Fig.2. For each butterfly

8412

2stage

000
001
010
011
020
021
100
101
110
111
120
121

twiAddrβ

)(
)(

232
012 CCC

3stage

000
001
002
010
011
012
100
101
102
110
111
112

0
0
0
0
2
4
0
1
2
0
3
6

)(
)(

223
012 CCC

00
00
00
00
00
00
10
10
10
10
10
10

0
0
0
0
0
0
0
3
0
3
0
3

)(02C
β

00
00
00
10
10
10
01
01
01
11
11
11

)(21CC
twiAddr

0
1
2
3
4
5
6
7
8
9
10
11

n

1stage

twiAddrβ

00
00
00
00
00
00
00
00
00
00
00
00

0
0
0
0
0
0
0
0
0
0
0
0

ACC ACC

)(00
2n 1n 0n

0
1
0
1
0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1
0
1
0
1

0
1
2
0
1
2
0
1
2
0
1
2

Fig.3. Accesses for twiddle factors of radix-2/3 FFT.

computation, the left addresses of it in Fig.2 are for the
input operands the ones in Fig.3 are for the twiddle factors.

Therefore, we easily get the addresses of the operands
and the twiddle factors using one accumulator for the mixed
radix FFTs. The ACC satisfies the conditions listed in
Table2. Figure 1 gives the relation between the addresses of
operands and the accumulator. Table 3 lists the relation
between the addresses of the twiddle factors and the same
accumulator.

4. COMPARISONS

The architectures of the in-place algorithms are generally
consistent. The key comparison part is the address
generation. Meanwhile, because the twiddle factor is not
considered in [12], only a comparison on the address
generation for the operands between the method in [12] and
the proposed scheme is given. The intermediate values in
[11] are hard to be implemented in hardware, so there is no
comparison with the scheme in [11].

For simplicity, a 12-point radix-2/3 FFT is taken as the
illustrative example. Fig.4 (a) shows the proposed scheme
and Fig.4 (b) shows the scheme in [12]. By comparison, the
novel scheme has two characteristics:

(I) It keeps the architecture of FFT consistent for every
stage. Thus, we only design one architecture to get the
accessing address by the ACC . For the method in [12], the
architecture of address generation for each stage is different.
We have to design three different architectures to obtain the
corresponding accessing addresses for the each stage. If the
FFT point becomes larger, more resources are needed for
the address generation.

(II)It requires no complex modulo operations. The
larger the FFT size is, the more modulo operations are
needed in [12].

Table 4 lists the number of mathematical operations
for the 12-point FFT.

Therefore, the proposed scheme simplifies the
complexity of generating addresses.

5. CONCLUSIONS AND DISCUSSION

2C0C 1C

Address

1Stage 2Stage 3Stage

6 3

0C 1C2C

Address

6 3

0C1C2C）（232=ACC 0C1C2C

0C1C2C

Address

6 3

0C1C2C）（223=ACC）（232=ACC

(a)

0C1C2C

1Stage 2Stage 3Stage

6 4 3

）（322=ACC 0C1C2C）（232=ACC

6mod

Address

6 3 4

0C1C2C）（223=ACC

6mod

62

Address

Address
(b)

Fig.4. Address generation for 12-point radix-2/3 FFT by (a)
the proposed method, and (b) the method in [12].

Table 4. Mathematical operations comparisons of
Hsiao’s design and ours

Scheme Our Scheme Hsiao’s Design [12]

2-input addition 2 6

2-input multiplication 2 8

Modulo operation 0 2

An iterative approach can be applied to analyze the address
generation for mixed-radix in-place FFT with ordered
inputs. The accessing addresses for the operands and the
twiddle factors can be achieved from one accumulator. It is
easy to implement this accumulator in hardware circuits.

With respect to the tradeoff, mixed radix FFT costs
more than one butterfly unit compared with fixed radix FFT.
However, a unified architecture, just like that described in
[17], can be achieved to compute arbitrary two butterflies.
Therefore, the increased resources of the butterfly unit with
unified architecture have small impact on the overall
resources.

6. REFERENCES

[1] T.Z. Sung, H.C. Hsin, et al, “Low-power and high-speed
CORDIC-based split-radix FFT processor for OFDM systems,”
Digit. Signal Prog, vol. 20, no. 2, pp. 511-527, 2010.

[2] M. Garrido, J. Grajal, M.A. Sanchez, et al, “Pipelined radix-2k
feedforward FFT architectures,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst, vol. 21, no.1, pp. 23-32, 2013.

[3] J. Li, F. Liu, T. Long, et al, “Research on Pipeline R22SDF
FFT,” IET Int. Radar Conf,, Guilin, China, Apr. 20-22 2009, pp.1-
5.

8413

[4] K. Maharatna, E. Grass, and U. Jagdhold, “A 64-Point Fourier
Transform Chip for High-Speed Wireless LAN Application Using
OFDM,” IEEE J. Solid-State Circuit, vol. 39 no.3, pp.484-493,
2004.

[5] H. Liu and H. Lee, “A high performance four parallel 128/64-
point radix-24 FFT/IFFT processor for MIMO-OFDM systems,”
IEEE Asia Pacific Conf. Circuits Syst. (APCCSA), Macao, China,
Nov. 30-Dec. 3 2008, pp.834-837.

[6] E. Dubois and A. Venetsanopoulos, “A new algorithm for the
radix-3 FFT,” IEEE Trans. Acoustics, Speech, Signal Prog, vol.29,
no.4, pp. 939-941, 1982.

[7] D. Takahash, “A new radix-6 FFT algorithm suitable for
multiply-add instruction,” IEEE Int. Conf. Acoustics, Speech,
Signal Prog., Istanbul, Turkey, Jun. 5-9 2000, vol.6, pp.3343-3346.

[8] S.S. Deng, Y. Sun, L.S. Zhang, et al, “Design of High-Speed
FFT Processor for Length N=q×2m,” J. Comput. Res. Dev., vol. 45,
no. 8, pp. 1430-1438, 2008.

[9] A.T. Jacobson, D.N. Truong, and B.M. Baas, “The design of a
reconfigurable continuous-flow mixed-radix FFT Processor,”
IEEE Int. Sym. Circuit Syst., Taipei, China, May 24-27 2009,
pp.1133-1136.

[10] H. Xiao, An Pan, Y. Chen, et al, “Low-cost reconfigurable
VLSI architecture for fast Fourier transform,”IEEE Trans.
Consum。Electron, vol. 54, no.4, pp.1617-1622, 2008.

[11] G.L.Demuth, “Algorithms for defining mixed radix FFT flow
graphs,” IEEE trans. acoustics, speech, signal prog, vol. 37, no. 9,
pp. 1349-1358, 1989.

[12] C.F.Hsiao, Y.Chen, C.Y.Lee, “A generalized mixed-radix
algorithm for memory-based FFT processors,” IEEE trans. circuit
syst.-II, vol. 57, no. 1, pp.26-30, 2010.

[13] C. Yu, M.H.Yen, P.A. Hsiung, et al, “A Low-Power 64-point
Pipeline FFT/IFFT Processor for OFDM Applications,” IEEE
Trans. Consum. Electron., vol. 57, no.1, pp.40-45, 2011.

[14] C.L. Wey, S.Y. Lin, and W.C. Tang, “Efficient Memory-
based FFT Processors for OFDM Applications,” IEEE Int. Conf.
Electro/Information Technol, 2007, Chicago, US, May 17-20, pp.
345-350.

[15] B.G. Jo and M.H. Sunwoo,“New Continuous-Flow Mixed-
Radix (CFMR) FFT Processor Using Novel In-Place Strategy,”
IEEE Trans. Circuit Syst.-I, vol. 52, no. 5, pp. 911-919, 2005.

[16] H. Sorokin, J. Takala, “Conflict-free parallel access scheme
for mixed-radix FFT supporting I/O permutations,” IEEE Conf.
Aconstics, Speech, Signal Prog (ICASSP2011), Prague, C.Z., May
22-27 2011, pp. 2709-1712.

[17] F. Qureshi, M. Garrido and O. Gustafsson, “Unified
architecture for 2, 3, 4, 5, and 7-point DFTs based on Wingrad
Fourier transform algorithm,” Electron. Lett., vol. 49, no.5, pp.
348-349, 2013.

8414

