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ABSTRACT 

A mixed radix algorithm for the in-place fast Fourier 
transform (FFT), which is broadly used in most embedded 
signal processing fields, can be explicitly expressed by an 
iterative equation based on the Cooley-Tukey algorithm. 
The expression can be applied to either decimation-in-time 
(DIT) or decimation-in-frequency (DIF) FFTs with ordered 
inputs. For many newly emerging low power portable 
computing applications, such as mobile high definition 
video compressing, mobile fast and accurate satellite 
location, etc., the existing methods perform either resource 
consuming or non-flexible. In this paper, we propose a new 
addressing scheme for efficiently implementing mixed 
radix FFTs.  In this scheme, we elaborately design an 
accumulator that can generate accessing addresses for the 
operands, as well as the twiddle factors. The analytical 
results show that the proposed scheme reduces the 
algorithm complexity meanwhile helps the designer to 
efficiently choose an arbitrary FFT to design the in-place 
architecture. 
 
 

Index Terms—Fast Fourier Transform, mixed radix, 
address generation, in place, arithmetical complexity. 
 

1. INTRODUCTION 
 
Fast Fourier transform (FFT) algorithms play a key role in 
improving the feasibility of discrete Fourier transform 
(DFT), which is broadly used in most digital processing 
applications. For practical FFT uses, there are radix-2, 
radix-4 and split-radix [1] FFTs. Meanwhile, the research 
on radix-2k [2] FFT has resulted in the instantiation of such 
methods as radix-22 [3], radix-23 [4], and even radix-24 FFT 
[5]. Although the derivation and programming are intuitive 
for radix-2k FFT, the drawback is that the number of points 
has to be restricted to powers of two or four, which restricts 
its application in resource-limited portable computing 
scenarios. 

Recently, an optimal choice for the FFT size is in 
demand and many non-power-of-two FFTs, such as 3! and 
6!- point FFT, have been studied [6,7]. However, those 
methods are all in radix-q×2k FFTs [8], where q is prime, 

such as 3, 5, and 7, et al. Because the mixed radix FFT can 
be used in general scenarios, it becomes practical and useful. 
Some mixed radix FFT algorithms are studied, such as 
radix-2/4 [9,10] and radix-2/2! FFTs. They are based on 
radix-2 FFT. However, if the padding-zero method is used 
to satisfy the radix-2!FFT, it will consume a larger amount 
of memory than the mixed radix FFT. Since the memory 
cost is a significant part of the FFT processor, minimizing 
the necessary size is an effective way for the area reduction. 
Therefore, arbitrary mixed radix FFTs problems are 
discussed in [11, 12].  

Two methods, the pipelined and memory-based 
architectures [13, 14], have been proposed for different 
applications in various FFT processors. Although much 
higher throughput than memory based designs, the pipeline 
architectures have a larger area cost. Therefore, the in-place 
strategy [15] is taken and only one memory with N complex 
words is needed. 

However, the in-place strategy has a complex design 
circuit, which has to generate addresses for both operands 
and twiddle factors. Demuth [11] proposed a nested loop 
index generation algorithm to index inputs and outputs of 
FFT stages and another way to index twiddle factor 
exponents. This method needs many parameters to get the 
address, which is difficult to implement using hardware. 
Hsiao [12] gave the index mapping method for the 
generalized mixed radix algorithm with some complex 
modulo operations. A bit-level representation of the 
accessing rule was mentioned by Sorokin [16], which is 
used in different processing stages for a radix-2/4 FFT. In 
this paper, we will extend it to an arbitrary mixed radix FFT. 

An iterative expression that is applied to radix-r!/r! in-
place architecture is derived. The N data are stored in RAM 
and the N twiddle factors are in ROM. An accumulator is 
set to make the accessing address map easily to the 
hardware circuits and there is no modulo operation. The 
illustrative example is based on radix-2/3 decimation-in- 
time (DIT) in-place 12-point FFT. By this method, an 
appropriate FFT size is chosen to minimize the memory 
size and a simplified address control is designed.  

 
2. REVIEW OF MIXED-RADIX ALGORITHM 
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Suppose that the FFT size satisfies 1 2
1 2
s sN r r= × , where 

1r and 2r are two radices, 1s  and 2s are the corresponding 
integer powers, and a parameter s  is 1 2s s s= + . We 
assume that the algorithm uses 1s  radix- 1r  stages followed 
by 2s  radix- 2r  stages. According to Cooley-Tukey 
algorithm, the time and frequency indices, i.e. n  and k , are 
analyzed. The expressions for both n  and k  with s  digits 
in terms of 1r , 2r , 1s  and 2s  are obtained as follows. 
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where  if 10 1i s≤ ≤ − , 10 1[ , ]in r∈ − , else 20 1[ , ]in r∈ − ; 
if 20 1i s≤ ≤ − , 20 1[ , ]ik r∈ − , else 10 1[ , ]in r∈ − . 

For brevity, assume that 1
i
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For notational convenience, Eq. (3) can be written as 
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When Eq. (3) is substituted into Eq. (1), we 
decompose N-point DFT into s iterations and the mth 
(1≤m ≤ s ) iteration is as follows. 
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where 1 2' ( , )r r r∈ . When m satisfies 
21 m s≤ ≤ , 2'r r= , 

otherwise 1'r r= . 
From Eq. (5), 

1 0 1 2 1 0( ... ... )m m s m s mx k k k n n n− − − − −
 denotes one 

of 'r  operands for radix- 'r  butterfly in the mth stage and 
0 1 1 1 0( ... ... )m m s mx k k k n n− − −  represents the butterfly output. 

Because the in-place algorithm is used, we can analyze 
0 1 1 1 2 0  ( ) ( ... ... )m s m s m mixed radixAddr m k k k n n n− − − − −=  to explore the 

address generations in order to get the operands. 

Table 1. Variable digit with cycles in each stage. 

Stage Address representation Variable digit 

1 m s≤ <
 radixmixedmsmsm nnnkkk )......( 021110 −−−−−  1mk −  

s
 0 1 2 1( ... )s mixed radixk k k k −  1sk −  

 
Table 2. Different radix of iC  in each stage. 

Stage 0 1( ,..., )iC i s= −  Radix
 

21 ( )m m s≤ ≤  11 2, , ... sC C C  1r  

1 10 1 2 1, , , ...,s s sC C C C+ + −  2r  

2( )m s m s< ≤  1 1 1 0, ..., ,sC C C−  1r  

1 1 11 2 2 1, , , ..., ,s s s s sC C C C C+ + − −  2r  
 
Furthermore, ( )s m s mk c nW − −×  is the corresponding twiddle 

factor. We store the twiddle factors 2exp( / )iW j i Nπ= −   in a 
lookup table sequentially, where i  ranges from 0 to  N-1. 
We can get them from the lookup table by analyzing the 
exponent part, i.e. ( )s m s mk c n− − .  

The following section will present the addressing 
scheme by the iteration representation of n  and k  in the 
mth stage.  
 

3. THE PROPOSED ADDRESSING SCHEME 
 
3.1. Address generation for operands 
 
The 'r  consecutive addresses for the 'r  operands of radix-
'r  butterfly can be obtained in 'r  clock cycles. For every 

stage, we should find which digit is variable from 0 to 1'r −
and the other digits are constant in 

0 1 1 1 2 0( ... ... )m s m s m mixed radixk k k n n n− − − − − . The variable digit for 
every stage is listed in Table 1. 

Assume an accumulator, which is represented by 

1 2 3 2 1 0( ... )s s s mixed radixACC C C C C C C− − −=  for mapping the data 

addresses. iC  is the ith digit, 1sC −  is the most significant 
digit and 0C  the least significant digit. Only 0C  keeps 
varying with cycles, similar to 1mk −  at the mth stage, just as 
shown in Table 1. 

Because each digit in Addr  is either 1r  or 2r , iC  in 
ACC  is either  1r  or 2r . Therefore, there list the value of 

iC  in Table 2. The relationship between Addr  and ACC  
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Fig.1. Addresses generating for N-point FFT using ACC  
in the

 
mth stage. 
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Fig.2. Access for operands of 12-point radix2-3 FFT. 

in the mth stage is illustrated in Fig.1. 
Fig.1 shows that the address of the mth stage of FFT is 

obtained from ACC . The third row is the address, which is 
represented using time and frequency indices, i.e. n  and k .  
Fig.2 illustrates the addressing scheme for 12-point FFT, i.e. 
1 3r = , 2 2r = , 1 1s = , 2 2s = . In the first column, n  

represents the number of the memory depth from 0 to 11 
and also means the time sequence. When the stage of the 
FFT is the first, 2 1 01 232( ) ( ) ( )ACC C CC= = . According to 
Fig.1, 0C  is shifted to the left of the 2C , and we obtain that  

0 2 11 223( ) ( ) ( )Addr C C C= = . 1( )Addr  is variable as shown 
in column 3 and the addresses of the operands in memory 
are achieved by the conversion the mixed-radix numbers to 
the decimal representations and the values of n  are listed in 
column 4.  For example, the first radix-2 butterfly 
computation, the addresses of the two operands are 0 and 6 
separately. The outputs are stored in the same addresses. 
For the next two stages, ACC(2) = (C2C1C0 ) = (232)  and

2 1 03 223( ) ( ) ( )ACC C CC= = . 2 0 12 223( ) ( ) ( )Addr C C C= =  by 
shifting 0C  to the left of 1C  and 3 3( ) ( )Addr ACC= . 
Therefore, we can get the right addresses of the operands 
according to Fig.1. 
 
3.2. Address generation for twiddle factors 
 
Substitute the expression k  in Eq.(2) into ( )s m s mk c nW − −× , and 
the following expression is obtained.  
 

Table 3. The expression of β  in each stage. 

Stage Accessing address, ((s-1)-digit) 

1 000 00( ... ) mixed radix  
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There are three parts of the expression. We describe 
them separately and analyze which part is used to get the 
address of twiddle factor. 

Part 1: We obtain that 
1

1
'

s

s m s m i i
i m

c n c k

W

−

− −
=
∑

=  in each stage. 
        Part 2: 's m s m i ic n c kW − − denotes 'r -point DFT matrix, for 
example, 11 1 1[ ; ]−  is a 2-point DFT matrix. Different 
stages use different 'r -point DFT matrix. When 21 m s≤ ≤ , 
it is a 2r -point DFT matrix; otherwise, it is a 1r -point DFT 
matrix. 
       The first two parts have nothing to do with the address 
of twiddle factor, so we can get the address from part 3. 

We suppose a parameter 
2

0
' '

m

i i
i
c kβ

−

=

=∑  when 

2 3, , ...,m s= , and 0'β =  when 1m = . 'β  can be 
expressed by 1 2 2 1( ... )s m s m s s mixed radixC C C C− + − + − − −

 according to 

ACC  when 2 3, , ...,m s= . Let 's mcβ β−= × . The Table 3 
lists the expression β  in each stage.  

Suppose 0 1 2 3 2 1  ( ... )reverse s s s mixed radixACC C CC C C C− − −=  and it 
means the digit reverse of the ACC . Table 3 shows that the 
expression of β  is related to reverseACC . β  can be 
represented in VHDL when 2 3, , ...,m s=  as follows : 

[ ]2 0 2 1( ) (( ) )& (( ) ( ))reversem ACC m downto zeros s downto mβ <= − − − , 
where zeros  denotes a zero vector. 

Because 0 1 1, , , 's mn r− = ⋅⋅⋅ −  in part 3, the addresses of 
the 'r  twiddle factors for a butterfly unit in stage m can be 
acquired by s mn −  multiplication with ( )mβ , as Eq.(7). The 
accessing addresses of twiddle factors are obtained. 

0 0
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1 1
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m n
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=⎧
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⎪
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                        (7) 

Fig.3 shows the accessing address for twiddle factors 
of 12-point FFT. The column n  is the same meaning as 
that is in the first column in Fig.2. For each butterfly  
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Fig.3. Accesses for twiddle factors of radix-2/3 FFT. 

computation, the left addresses of it in Fig.2 are for the 
input operands the ones in Fig.3 are for the twiddle factors. 

Therefore, we easily get the addresses of the operands 
and the twiddle factors using one accumulator for the mixed 
radix FFTs. The ACC  satisfies the conditions listed in  
Table2. Figure 1 gives the relation between the addresses of 
operands and the accumulator. Table 3 lists the relation 
between the addresses of the twiddle factors and the same 
accumulator. 

 
4. COMPARISONS 

 
The architectures of the in-place algorithms are generally 
consistent. The key comparison part is the address 
generation. Meanwhile, because the twiddle factor is not 
considered in [12], only a comparison on the address 
generation for the operands between the method in [12] and 
the proposed scheme is given. The intermediate values in 
[11] are hard to be implemented in hardware, so there is no 
comparison with the scheme in [11].  

For simplicity, a 12-point radix-2/3 FFT is taken as the 
illustrative example. Fig.4 (a) shows the proposed scheme 
and Fig.4 (b) shows the scheme in [12]. By comparison, the 
novel scheme has two characteristics:  

(I) It keeps the architecture of FFT consistent for every 
stage. Thus, we only design one architecture to get the 
accessing address by the ACC . For the method in [12], the 
architecture of address generation for each stage is different. 
We have to design three different architectures to obtain the 
corresponding accessing addresses for the each stage. If the 
FFT point becomes larger, more resources are needed for 
the address generation.  

(II)It requires no complex modulo operations. The 
larger the FFT size is, the more modulo operations are 
needed in [12].  

Table 4 lists the number of mathematical operations 
for the 12-point FFT. 

Therefore, the proposed scheme simplifies the 
complexity of generating addresses.  

 
5. CONCLUSIONS AND DISCUSSION 
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Fig.4. Address generation for 12-point radix-2/3 FFT by (a) 
the proposed method, and (b) the method in [12]. 

Table 4. Mathematical  operations comparisons of 
Hsiao’s design and ours 

Scheme Our Scheme Hsiao’s Design [12] 

2-input addition 2 6 

2-input multiplication 2 8 

Modulo operation 0 2 
 
An iterative approach can be applied to analyze the address  
generation for mixed-radix in-place FFT with ordered 
inputs. The accessing addresses for the operands and the 
twiddle factors can be achieved from one accumulator. It is 
easy to implement this accumulator in hardware circuits. 

With respect to the tradeoff, mixed radix FFT costs 
more than one butterfly unit compared with fixed radix FFT. 
However, a unified architecture, just like that described in 
[17], can be achieved to compute arbitrary two butterflies. 
Therefore, the increased resources of the butterfly unit with 
unified architecture have small impact on the overall 
resources.  
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