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ABSTRACT

This paper presents a digital architecture for neural signal
compression using adaptive two-threshold spike detection and
a nonlinear discrete wavelet coefficient selection scheme. The
circuits and algorithms are described and compared with the
state-of-the-art. The proposed 16-channel digital architecture
is capable of neural data compression to 0.5% of the origi-
nal raw data rate while consuming 21µW, with 30-kHz 8-bit
sampling, in a 0.8-V 130-nm low-power IBM process.

1 Neural Interfaces
The pairing of implantable microelectrode arrays with

micro-electronic devices allows researchers to interface with
the nervous system in novel ways. Recent work [1], [2] has
shown that by recording large populations of neurons, the
resulting insights on firing patterns allow neuroprosthetic
interfaces to be developed that restore motor and sensory
function. The practicality of the interfaces in clinical practice
depends on technological advances that overcome communi-
cation and power limitations and provide real-time operation.
One of the main difficulties of real-time processing in pros-
thetic interfaces is the dynamic recording environment. In
neural recordings from microelectrode arrays, the quality
and quantity of neural signals depends on the position of the
electrodes with respect to the active neurons. Over time the
foreign body response and electrode movement can cause
changes in signal-to-noise ratios (SNR) that result in the
loss of neural sources. For neuroscience applications, real-
time discrimination of single neural sources from all of the
recorded signals and noise is critical. The technical challenge
of discriminating neural sources is compounded by the con-
straints imposed by the low energy budget of battery-powered
implanted devices.

1.1 Recording Systems
A generic implantable microelectronic system is illustrated
in Figure 1. The device must respect several constraints
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that limit the potential processing complexity. The tissue
surrounding the device can safely withstand only a small
increase in temperature of up to 41.7 ± 0.9 C, which corre-
sponds to a power dissipation of roughly 80 mW/cm2 [3], [4].
In addition, the storage and wireless transmission of energy
limits the average available operating power to 10s of mil-
liwatts [5], [6]. Sampling rates of experimental recordings
of neural action potentials are typically in the range of 15
kHz - 32 kHz with a pass band between 700 Hz and 7.5 kHz
and 8-10 bits per sample. Therefore, on a single recording
channel, we can expect a raw data rate of between 120 - 256
kbps. A microelectrode array may have up to 100 recording
channels, which can impose a significant energy and data
burden on the design of a very low-power implanted wireless
recording device. If we consider a scenario in which the
energy required to transmit information through tissue and
air is greater than the energy required to compress the data in
the implant, then adding signal processing prior to the radio
frequency transmission can save power.

Fig. 1. Block diagram of generic neural recording system.

Fortunately, most of the useful neural information is
believed to lie in the timing and membership of neural
pulses [7]. A neural spike is typically 1-2 ms in length and
has an amplitude of between 50-500 µV. Neural firing rates
are limited by the ability of neural membranes to move ions
and therefore neurons are unable to produce additional spikes
within a refractory period. This refractory period is typically
1-2 ms after a spike. By capturing and processing only neural
spikes, transmitted data rates can be reduced significantly.

For an implanted device to be useful for medical diag-
nosis and rehabilitation, spike detection, identification and
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classification must be performed adaptively in real-time. In
previous work [8], we described a mixed signal system with
single-threshold detection and compression through multi-
level discrete wavelet transform decomposition. In this paper,
we focus on new adaptive processing techniques intended
for spike sorting that target a low-power implantable sensor.
This paper proposes dual-threshold spike detection combined
with a wavelet-based compression method. Section 2 reviews
the literature on spike detection and presents our new ap-
proach. Section 3 describes the wavelet transform coefficient
selection method. We present test and simulation results on
adaptive detection and wavelet compression with experimen-
tal recordings in Section 4 and draw conclusions in Section
5.

2 Spike Detection

Spike detection is the single most effective way of re-
ducing the amount of neural data to be processed. Triggered
sampling is a common method used for spike detection. Its
performance depends on the type of trigger and the SNR of
the channel. The performance of a spike detection method
can be measured by looking at its complexity or energy con-
sumption, and by its false detection and true positive detection
rates. In channels with a high SNR, a simple and effective
trigger is the absolute value threshold [9]. In [10] the au-
thors compare the spike detection performance of an absolute
value threshold, a nonlinear energy operator, and a matched
filter. In [9] the authors extend the comparison to include a
stationary wavelet transform product. In both studies a single
absolute value threshold is found to have good spike detec-
tion performance with low complexity; however, in [9] the
authors advocate for the use of a nonlinear energy operator
because of superior probability of detection for an acceptable
increase in computational complexity.

The neural recording environment can change over time
and static threshold crossings can give a large number of
false detections. Therefore a spike detection method must
be adaptable to the channel SNR. By utilizing noise estima-
tion a threshold can be adjusted or a different spike detection
method enabled. In [11], depending on the channel SNR,
either an absolute value threshold or a stationary wavelet
transform is used. References [12–17] describe various meth-
ods that utilize noise estimation to set appropriate threshold
levels. A single-level threshold can be adjusted based on the
type of noise expected in the channel. In [15] the threshold
is based on the standard deviation of Gaussian-shaped noise.
Alternatively, the threshold can be based on a small deviation
away from the mean signal and then adjusted depending on
feedback from spike classification [12]. A single threshold
based on the root mean square (RMS) amplitude can be ap-
plied to both the peaks and troughs, similar to absolute value
threshold detection, as described in [13].

2.1 Adaptive Two-Threshold Spike Detection
To reduce the number of false detections in a single-valued
threshold detector, we adopted a two-threshold spike detector.
One threshold is used for the leading peak and another for the
subsequent trough. We enhanced the application of a two-
threshold adaptive spike detector, similar to the concepts dis-
cussed in [14] and [16], but used an arithmetic scheme for the
adaptive noise estimate from [14] and applied it to the two-
threshold time window from [16] without the low-pass filter
on the trough. An adaptive two-threshold detection scheme
can detect a peak and/or trough and does not require them
to have the same amplitudes. Additionally, a two-threshold
scheme can require that both a peak and corresponding trough
occur within a specified short time span, for example < 1 ms.
The peak and trough thresholds are calculated based on an
estimate of the noise envelope. Given a neural signal s[n],
broken into a set of windows of wk = s[n : n + W − 1],
with K ≥ 0 and W samples per window, the proposed new
algorithm for the positive noise envelope calculation is:

Initialize the envelope estimate Ee to Max0 = max(w0).
if Maxi > Ee then

if Maxi < (Ee+ HIGH) then
Ee = Ee+ INCREMENT

else
if Maxi < (Ee− HIGH) then

Ee =Maxi
else

Ee = Ee− INCREMENT

The value of HIGH is chosen to ensure that windows with
spikes are ignored, and INCREMENT is used to set the new
envelope to be either a step up or down from the previous
value, similar to the method in [12]. The thresholds are based
on the envelope estimate plus a small offset, usually smaller
than the value present in HIGH. In the case where spikes are
frequently occurring in the amplitude space between noise
and the HIGH offset, a reset is available for inactive periods
since this kind of spiking may raise the envelope estimate and
need to be quickly re-adjusted. The two-threshold detector
can use positive or negative threshold only operation, but
for recording tri-phasic neural signals, using the two thresh-
olds can reduce the number of false detections, as shown in
Section IV.

3 Waveform Compression
Once the possible spikes are detected they can either be

transmitted directly in “raw” form or processed further to
compress the transmitted spike information. The extra pro-
cessing can try to capture the shape of the waveform more
efficiently, or may extract the significant features necessary
for spike classification (spike sorting). The extraction and
mapping of features for spike sorting can be computation-
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ally expensive and therefore careful consideration of the
energy costs of the extra processing versus transmission is
needed. It will be advantageous to reduce the amount of data
by transmitting only the features required by the external
classification method. In [16] the authors use PCA on peak
amplitudes, trough amplitudes, and the width of the peaks.
This sorter can achieve 90% correct classification. In [15]
they use an offline expectation-maximization algorithm and
in [18] they use wavelet footprints as features in PCA. The
authors in [19] encode the peak and trough of spikes using
a first-order piece-wise linear representation and clustering
based on Euclidean distance. In [9] PCA, the discrete wavelet
transform, the discrete derivative, and the integral transform
are compared. The authors advocate discrete derivatives as a
good choice due to a PCA-like classification performance at
a lower computational cost. We use the wavelet transform.

3.1 Wavelet Transform
The discrete wavelet transform (DWT) can be considered a
combination of a transform and subband decomposition [20].
The transform uses a half-band low-pass approximation fil-
ter and a half-band high-pass detail filter. The filter outputs
are decimated by two at each level l of the transformation
without losing any information. As noted in [11], the DWT
suffers from shift variance, while the stationary wavelet trans-
form (SWT) does not. The SWT utilizes the same filters as
the DWT, but does not use decimation at each level. As pro-
posed in [11], using the SWT in low-SNR regimes can help
identify spike detections that triggered sampling might other-
wise miss; however, we propose to use the DWT to compress
the signal for all detections since our peak locations are deter-
mined by the two-threshold detection algorithm.

The performance of a transform for lossy compression can
be measured with the mean squared error (MSE) of the recon-
struction, shown in Eq. 1, and by the number of coefficients
needed to represent the shape.

MSE =
1

N

∑
N

(x[n]− x̂[n])2 (1)

As shown in [21], the symlet4 basis is an excellent wavelet
basis for representing neural spikes. Using this basis we can
apply coefficient thresholding and the knowledge of the most
important coefficients within the windows of triggered sam-
ples to further compress neural signals.

4 System Architecture
A simplified system architecture is shown in Figure 2.

The spike detection can be performed using positive-only,
negative-only, or dual-threshold detection. A delay buffer
is necessary to preserve the samples seen just before the
first threshold crossing. The combination of a system-wide
controller and channel buffer allows the spikes to be sent to
the wavelet engine on an activity basis. The detected spikes
are compressed by selecting K coefficients from a 3-level

wavelet engine. The 3-level DWT implemented here uses
a finite impulse response (FIR) filter structure [8]. The co-
efficients that are above the threshold have known locations
within the window, so only those amplitudes need to be trans-
mitted. The sample locations are chosen based on a training
phase or previously recorded signals. The K largest coef-
ficients from each spike are found for the observed spikes.
The K coefficient locations that occur the most often are
selected for transmission. The value of K is chosen to ensure
reconstructions of triggered detections with a desired mean
squared error (MSE). A K value of 10 can yield an average
MSE of 50 over all of the channels, which creates visually
accurate reconstructions of spikes. The coefficients selected
are stored in a programmable register and can be provided on
a per-channel basis.

5 Simulations and Results
This section contains simulation results and tested silicon

results using experimentally recorded neural signals from the
dorsal root ganglion of a feline and simulated data sets as de-
scribed in [22]. The fabricated 2x2 mm chip uses the low-
power, high-Vt, 130-nm IBM process. It contains a test chan-
nel and a separate 16-channel system. The wavelet compres-
sion is used in the next generation of the chip.

5.1 Two-Threshold Triggered Sampling
Table 1 shows simulation results on the data sets from [22].
The two-threshold detector’s operational mode is set to
positive-only threshold in column ‘Pos’, negative-only thresh-
old in column ‘Neg’, and operates regularly in column ‘Both’.
The column ‘Thr’ indicates the single threshold of 4σN as
described in [22]. The adaptive dual-threshold detector im-
proves upon the static single-threshold detector in spike trains
that have strong tri-phasic pulses by significantly reducing the
number of false detections by 77%, which reduces the power
consumption of the implanted device and improves the com-
pression performance. However, the disadvantage in this
version is that spikes with large positive peaks, but with very
small negative peaks that are below the estimated threshold,
are missed.

Table 1. Comparison of spike detection methods
Missed Detections False Detections

Data Pos. Neg. Both Thr. Pos. Neg. Both Thr.
Sim1 0 60 1 0 1351 204 462 1340
Sim2 0 324 4 0 1279 246 419 1246
Sim3 0 700 179 0 1340 127 399 1328
Sim4 0 548 327 0 1290 114 383 1281
Sim5 0 4 0 0 1296 148 427 1279

Table 2 compares the performance of the two-threshold
detector with the single threshold on a experimental record-
ing with scaled noise. The test signal was created by piecing
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Fig. 2. Proposed system architecture with dual threshold spike detection and 3-level wavelet compression.

together recorded spikes and noise with the spikes having a
mean of -0.57 µV and a standard deviation of 63.9 µV over
650 spikes. The noise is scaled by a factor A. At A=1, the
noisy segments have an average of -0.007 µV and standard
deviation of 8.04 µV . The number of false detections in the
dual-threshold detector is reduced by 50% in the three sce-
narios; as well the number of true positives found is increased
compared to the single threshold.

Table 2. Detection comparison with noise scaled recording
True Positive % False Positive %

A Dual 4σN Dual 4σN
1 99.0 98.6 1.3 2.7
2 89.1 82.0 7.2 14.4
3 81.2 74.3 14.6 21.8

The power dissipation of single channel detector is shown
in Table 3. The static power of high-Vt CMOS dominates
the dynamic power. Future design iterations of the detectors
should consider utilizing power gating or other technologies
for mitigating leakage and static current in future iterations of
the detector.

Table 3. Synthesized and measured power for one channel
Synthesized Measured

VDD 1.08V 1.08V 0.79V
Static 53.18 µW 55.68 µW 7.97 µW

Dynamic 127 nW 189 nW 88 nW

5.2 Wavelet Compression
A triggered interval, depending on the sampling frequency
and interval duration, can contain 15-60 samples. The com-
pression method needs to accurately represent the waveform
using fewer bits. A typical channel settingK = 10 resulted in
a MSE of 47.6 for all detections. The resulting compression,
considering a 48-sample window, is 21% of the original size.
The reconstructions are shown in Figure 3.

The post-synthesis simulation results indicate a power
dissipation of 454 µW, with 2.34 µW for dynamic power, at a
clock frequency of 30 kHz with 8-bit samples at 1.2 V in 130-

Fig. 3. A plot of reconstructed detections with K = 10.

nm low-power IBM technology. The pre-layout synthesized
logic area is 250975 µm2. Once again, the static power dis-
sipation dominates as the main source of power dissipation.
The 16-channel digital block, without wavelet compression,
has a synthesized logic area of 0.8755 mm2 with a power
dissipation of 20.95 µW at 0.8V, which is comparable, on
a per channel basis, to other work like [11] with an area of
0.082 mm2 and power dissipation of 0.450 µW , and [19]
with a complete channel area of 0.16 mm2 and power of 3.1
µW . The digital system presented has an adjustable degree
of compression and corresponding power cost as we can vary
the number of wavelet coefficients and vary the thresholds
to avoid more false detections in high SNR channels. In
addition, the adaptive two-threshold scheme offers clear per-
formance advantages over nonadaptive methods, so we are
currently implementing an implantable prototype.

6 Conclusion
This paper presents new architectures for an adaptive real-

time two-threshold neural spike detector and wavelet-based
compression with an adjustable compression-accuracy trade-
off. The test results indicate an implantable digital neural
recording processor would dissipate an estimated 1.3 µW per
recording channel while achieving 1.8% of the raw data rate
using two-threshold triggered spike detection. For an addi-
tional 28 µW, per channel, a 0.4% of the raw data rate is ob-
tained using a wavelet transform with nonlinear coefficient
thresholding. The static power dissipation dominates the cir-
cuit performance and future versions will include techniques
beyond utilizing a low-power, high-Vt, process to further re-
duce power dissipation.
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