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ABSTRACT
We propose a general algorithmic framework for the minimization
of a nonconvex smooth function subject to nonconvex smooth con-
straints. The algorithm solves a sequence of (separable) strongly
convex problems. Convergence to a stationary solution of the orig-
inal nonconvex optimization is established. Our framework is very
general and flexible; it unifies several existing Successive Convex
Approximation (SCA)-based algorithms such as (proximal) gradi-
ent or Newton type methods, block coordinate (parallel) descent
schemes, difference of convex functions methods, and improves on
their convergence properties. More importantly, and differently from
current SCA schemes, it naturally leads to distributed and paral-
lelizable schemes for a large class of nonconvex problems. The new
method is applied to the solution of a new rate profile optimization
problem over Interference Broadcast Channels (IBCs); numerical re-
sults show that it outperforms existing ad-hoc algorithms.

Index Terms— Nonconvex problems, Parallel & distributed op-
timization, Successive convex approximation.

1. INTRODUCTION
The minimization of a nonconvex functionU subject to some convex
constraints K and nonconvex ones gj(x) ≤ 0

min
x

U(x)

s. t.
gj(x) ≤ 0, j = 1, . . . ,m

x ∈ K,

}
, X ,

(P)

with U : K → R and gj : K → R smooth, is an ubiquitous
problem that arises in many fields, ranging from signal processing to
communication, networking, machine learning, etc.

It is hardly possible here to even summarize the huge amount
of solution methods that have been proposed for Problem (P). Our
focus in this paper is on distributed algorithms converging to station-
ary solutions of (P) while preserving the feasibility of the iterates.
While the former feature needs no further comment, the latter is mo-
tivated by several reasons. First, in many cases the objective function
U is not even defined outside the feasible set; second, in some ap-
plications one may have to interrupt calculations before a solution
has been reached and it is then important that the current iterate is
feasible; and third, in on-line implementations it is mandatory that
some constraints are satisfied by every iterate (e.g., think of power
budget or interference constraints). As far as we are aware of, there
exists no method for the solution of (1) in its full generality that is
both feasible and distributed.

Existing efforts pursuing the above design criteria can be roughly
divided into three main categories: 1) Feasible Sequential Quadratic
Programming (FSQP) methods (e.g., [1]); 2) Parallel Variable Dis-
tribution (PVD) schemes (e.g., [2, 3, 4]); and 3) SCA algorithms
(in the spirit of [5, 6, 7, 8, 9, 10]). FSQP methods [1] mantain fea-
sibility throughout the iterations, but are centralized and computa-
tionally expensive. PVD schemes are suitable for implementation
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over parallel architectures but they require an amount of informa-
tion exchange/knowledge that is not compatible with a distributed
architecture (for example they cannot be applied to the case study
discussed in Section 3). Furthermore, when applied to problem (P),
they call for the solution of possibly difficult nonconvex (smaller)
subproblems; and convergence has been established only for convex
[2, 4] or nonconvex but block separable gj’s [3]. Finally, standard
SCA methods are centralized [5, 6, 10], with the exception of [8, 9]
and some instances of [7] that lead instead to distributed schemes.
However convergence conditions have been established only in the
case of strongly convex U [6] or convex and separable gj’s [7, 8, 9].

In this paper we propose a new convergent algorithmic frame-
work for the general formulation (P) which on the one hand main-
tains feasibility and, on the other hand, leads, under very mild ad-
ditional assumptions, to parallel and distributed solution methods.
More specifically, the method solves a sequence of strongly convex
inner approximations of (P) that, under some mild assumptions, can
be solved in a distributed way using standard primal/dual decom-
position techniques (e.g., [11, 12]). Additional key features of the
proposed method are: i) it includes as special cases several classical
SCA-based algorithms, such as (proximal) gradient or Newton type
methods, block coordinate (parallel) descent schemes, difference of
convex functions methods; ii) our convergence conditions unify and
extend to the general class (P) those of current (centralized) SCA
methods; and iii) it provides new efficient algorithms for old prob-
lems, e.g. power control problems in cellular systems [13, 14, 15,
16]; MIMO relay optimization [17], dynamic spectrum management
in DSL systems [18, 19], sum-rate maximization, proportional-fairness
and max-min optimization of SISO/MISO/MIMO ad-hoc networks
[8, 20, 21, 22, 23, 24, 25], robust optimization of CR networks [26,
27, 28]. As a case study, our method is applied to a novel rate profile
maximization problem over IBCs. Numerical results show that the
new method compares favorably to existing ad-hoc algorithms.

2. MAIN RESULTS
2.1. Technical preliminaries and main idea
Consider Problem (P), whose feasible set is denoted by X .
Assumption 1. We make the blanket assumptions:
A1) K ⊆ Rn is closed and convex;
A2) U and each gj are continuously differentiable on K;
A3)∇xU is Lipschitz continuous on K with constant L∇U .
A4) For some x0 ∈ X , {x ∈ X : U(x) ≤ U(x0)} is compact.

The assumptions above are quite standard and are satisfied by a
large class of problems of practical interest. In particular, condition
A4 guarantees that the social problem has a solution, even when the
feasible set X is not bounded. Note that we do not assume convexity
of the functions U and g1, . . . , gm; w.l.o.g., convex constraints, if
present, are accommodated in the set K.

Our goal is to efficiently compute locally optimal solutions of
(P), possibly in a distributed way while preserving the feasibility of
the iterates. Building on the idea of SCA methods, the proposed
approach consists in solving a sequence of strongly convex inner ap-
proximations of (P) in the form: given xν ∈ X ,
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min
x

Ũ(x; xν)

s.t.
g̃j(x; xν) ≤ 0, j = 1, . . . ,m

x ∈ K.

}
, X (xν),

(Pν )

where Ũ(x; xν) and g̃j(x; xν) represent approximations of U(x)
and gj(x) at the current iterate xν , respectively; and X (xν) denotes
the feasible set. We make the following assumptions; weaker re-
quirements can be found in [29].
Assumption 2 (On Ũ ). Let Ũ : K × X → R satisfy the following:
B1) Ũ(•,y) is uniformly strongly convex onK with constant cŨ>0;
B2)∇xŨ(y; y) = ∇xU(y), for all y ∈ X ;
B3)∇xŨ(•; •) is Lipschitz continuous on K × X ;
where ∇xŨ(y; y) denotes the partial gradient of Ũ(x; y) with re-
spect to x evaluated at (y; y).
Assumption 3 (On g̃j’s). Let each g̃j : K × X → R satisfy
C1) g̃j(•,y) is convex on K for all y ∈ X ;
C2) g̃j(x; x) = gj(x), for all x ∈ X ;
C3) gj(x) ≤ g̃j(x; y) for all x ∈ K and y ∈ X ;
C4) g̃j(•; •) is Lipschitz continuous on K × X ;
C5)∇xgj(y) = ∇xg̃j(y; y), for all y ∈ X ;
C6)∇xg̃j(•; •) is continuous on K × X ;
where ∇xg̃j(y,y) denotes the partial gradient of g̃j(x,y) with re-
spect to x evaluated at (y,y).

The key assumptions are B1, C1, and C3: B1 and C1 make (Pν )
strongly convex, whereas C3 guarantees X (xν) ⊆ X (iterate fea-
sibility). The others are technical conditions (easy to be satisfied
in practice) ensuring that the approximations have locally the same
first order behavior of the original functions. In the next section we
provide some examples of approximate functions that automatically
satisfy Assumptions 2 and 3. As a final remark, we point out that
Assumptions 1 and 2 are in many ways similar but generally weaker
than those proposed in the literature to solve special cases of prob-
lem (P) [5, 6, 7, 8, 9]. For instance, [7, 8, 9] studied the simpler
case of convex constraints, and [7] requires the convex approxima-
tion Ũ(•; xν) to be a global upper bound of Ũ(•), whereas we do
not. The upper bound condition C3 is assumed also in [5, 6] but,
differently from those works, we are able to handle also nonconvex
objective functions (rather than only convex ones).

Under the above assumptions, associated with each strongly con-
vex subproblem (Pν ), we define its unique solution x̂(xν) (a func-
tion of xν )

x̂(xν) , argmin
x∈X (xν)

Ũ(x; xν). (1)

that will be used to formally introduce our algorithm.
Regularity conditions. We conclude this section mentioning certain
standard regularity conditions on the stationary points of constrained
optimization problems. These conditions are needed in the study of
the convergence properties of our method. A stationary point x̄ of
(P) (or (Pν )) is called regular if the Mangasarian-Fromovitz Con-
straint Qualification (MFCQ) holds at x̄; see [30, Sec. 3.2]. If the
feasible set is convex, as it is in (Pν ), the MFCQ holds if and only
if the Slater’s Constraints Qualification (CQ) holds [30, Sec. 3.2].
Stronger, but easier to be checked CQs can also be used, see [29] for
more details.

2.2. Algorithmic framework

We are now ready to introduce a formal description of the proposed
solution method for (P), which is given in Algorithm 1. Its conver-
gence properties are stated in Theorem 1; see [29] for the proof and
weaker convergence conditions.

Algorithm 1: Inner SCA Algorithm for (P)

Data: γν ∈ (0, 1], x0 ∈ X . Set ν = 0.
(S.1) : If xν is a stationary solution of (P): STOP.
(S.2) : Compute the solution x̂(xν) of problem (Pν ) [cf. (1)].
(S.3) : Set xν+1 = xν + γν(x̂(xν)− xν).
(S.4) : ν ← ν + 1 and go to step (S.1).

Theorem 1 Given the nonconvex problem (P) under Assumptions
1-3, suppose that one of the two following conditions holds.
(a): The step-size γν is such that 0 < infν γ

ν ≤ supν γ
ν ≤

γmax ≤ 1 and 2cŨ ≥ γ
maxL∇U .

(b): i) X is compact, ii) x̂(y) ∈ X (y) is regular for every y ∈ X ;
and iii) the step-size γν is such that γν ∈ (0, 1], γν → 0, and∑
ν γ

ν = +∞.
Then every regular limit point of {xν} is a stationary solution

of (P). Furthermore, none of such points is a local maximum of U .
On the generality of the algorithm. Algorithm 1 implements a
novel family of inner SCA methods for problem (P). Roughly speak-
ing, it consists in solving the sequence of strongly convex problems
(Pν ) wherein the original objective function U is replaced by the
strongly convex approximation Ũ and the nonconvex constraints gj’s
with the convex upper estimates g̃j ; convex constraints, if any, are
kept unaltered. Note that in Step 3 we allow a memory in the update
of the iterates xν (Step 3), in the form of a convex combination via
γν ∈ (0, 1]. Convergence is guaranteed under mild assumptions that
offer a lot of flexibility in the choice of the approximation functions
and free parameters [cf. Theorem 1a) and b)], making the proposed
scheme appealing for many applications. Note that x̂(y) ∈ X (y) in
Theorem 1b) is regular if Slater’s CQ holds on X (y).
On the approximations g̃j’s. As already mentioned, while assump-
tion C3 might look rather elusive, in many practical cases, an upper
approximate function for the nonconvex constraints gj’s is close at
hand. Some examples of g̃j satisfying Assumption 3 (and in partic-
ular C3) are given next; many others are discussed in [29].
Example #1− Nonconvex constraints with DC structure. Suppose
that gj has a DC structure, that is, gj(x) = g+

j (x) − g−j (x) is the
difference of two convex and continuously differentiable functions
g+
j and g−j . By linearizing the concave part −g−j and keeping the

convex part g+
j unchanged, we obtain the following convex upper

approximation of gj : for all x ∈ K and y ∈ X ,
g̃j(x,y) , g+

j (x)− g−j (y)−∇xg
−
j (y)T (x− y) ≥ gj(x). (2)

Example #2− Nonconvex constraints with Lipschitz gradients. If the
gradient of the nonconvex function gj is Lipschitz continuous on K
with constant L∇gj , the following convex approximation function is
a global upper bound of gj : for all x ∈ K and y ∈ X ,

g̃j(x,y) , gj(y)+∇xgj(y)T (x−y)+
L∇gj

2
‖x−y‖2 ≥ gj(x).

(3)
On the approximation Ũ . The approximation Ũ(x; y) of U need
not be a tight global upper bound of U(x) for every y ∈ X [cf. As-
sumption 2]. This represents a turning point in the literature of SCA
methods [proposed for special cases of (P)] [5, 7]. In fact, conditions
on Ũ as in Assumption 2 are relatively weak, enlarging significantly
the class of utility functions U which the proposed solution method
is applicable to. For instance, all the approximations proposed in [8]
can be used also here. Some instances of valid Ũ for specific U are
given next; see [29] for more examples.
Example #3− (Not jointly) convex U(x1, . . . ,xn). In many applica-
tions, the vector of variables x is partitioned in blocks x = (xi)

I
i=1
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and the function U is convex in each block xi separately, but not
jointly. A natural approximation for such a U exploring its “partia"
convexity is Ũ(x; y) =

∑I
i=1 Ũi(xi; y), with

Ũi(xi; y) , U(xi,y−i) +
τi
2

(xi − yi)
THi(y)(xi − yi), (4)

where y , (yi)
I
i=1, y−i , (yj)j 6=i, and Hi(y) is any uniformly

positive definite matrix (possibly depended on y). Note that the
quadratic term in (4) can be set to zero if U(xi,y−i) is strongly
convex in xi, uniformly for all feasible y−i. Mimicking (quasi-)
Newton-like schemes, an alternative choice for Ũi(xi; y) is

Ũi(xi; y) , ∇xiU(y)T (xi − yi)

+
1

2
(xi − yi)

T∇2
xiU(y)(xi − yi) +

τi
2
‖xi − yi‖2 ,

where ∇2
xiU(y) is the Hessian of U w.r.t. xi evaluated in y. One

can also use any positive definite “approximation" of∇2
xiU(y).

Needless to say, if U(x1, . . . ,xn) is jointly convex in all the
block variables, then Ũ(x; y) can be chosen Ũ(x; y) , U(x) +∑
i
τi
2
‖xi−yi‖2, where τi

2
‖xi−yi‖2 is not needed if U(xi, x−i)

is strongly convex in xi, uniformly for all feasible x−i.
Example #4−(Proximal) gradient-like approximations. If no con-
vexity whatsoever is present inU , mimicking proximal-gradient meth-
ods, a valid choice of Ũ is the first order approximation of U , that
is, Ũ(x; y) =

∑I
i=1 Ũi(xi; y), with each Ũi(xi; y) , ∇xiU(y)T

(xi − yi) + τi
2
‖xi − yi‖2. Note that even though classical (prox-

imal) gradient descent methods (see, e.g., [31]) share the same ap-
proximation function, they are not applicable to problem (P), due to
the noncovexity of the feasible set.
Example #5− Sum-utility function. In multi-agent scenarios, the ob-
jective function U is generally written as U(x) ,

∑I
i=1 fi(x1, . . . ,

xI), that is, the sum of the utilities fi(x1, . . . ,xI) of I agents, each
of them controlling the variables xi. A typical situation is when
fi are convex in some agents’ variables. To capture this property,
let us define by Si , {j = 1, . . . , I : fj(•,x−i) is convex in xi
∀(xi,x−i) ∈ K} the set of indices of all the functions fj(xi,x−i)
that are convex in xi, for any feasible x−i, and let Ci ⊆ Si be any
subset of Si. Then, the following approximation function Ũ(x; y)
satisfies Assumption 2 while exploiting the partial convexity of U (if
any): Ũ(x; y) =

∑n
i=1 ŨCi(xi; y), with each ŨCi defined as

ŨCi(xi; y) ,
∑
j∈Ci fj(xi,y−i) +

∑
k/∈Ci ∇xifk(y)T (xi − yi)

+ τi
2

(xi − yi)
THi(y)(xi − yi),

where Hi(y) is any uniformly positive definite matrix.
On the choice of the step-size rule. Theorem 1 states that Algo-
rithm 1 converges either employing a constant step-size rule [case
a)] or a diminishing step-size rule [case b)]. Some effective guide-
lines in the choice of the free parameters can be found in [8]; we
omit more details because of space limitation, see also [29].

2.3. Distributed implementation
In many applications, e.g., multiuser systems or distributed networks,
it is desirable to keep users coordination and communication over-
head as low as possible. Here, we briefly discuss how to decompose
Algorithm 1; we focus on the following (still very large) subclass of
problems (P) allowing for distributed computation.
Assumption 4 (Decomposabilty). Given (P), the following holds:
D1) The set K has a Cartesian structure, i.e., K = K1 × · · · ×
KI , with each Ki ⊂ Rni , and

∑
i ni = n; and x , (xi)

I
i=1 is

partitioned accordingly, with each xi ∈ Ki.
D2) The approximate function Ũ(x; y) satisfying Assumption 2 is
chosen so that Ũ(x; y) =

∑
i Ũi(xi; y).

D3) The approximate functions g̃j(x; y) satisfying Assumption 3
are (block) separable in the x-variables, for any given y, that is,
each g̃j(x; y) =

∑
i g̃
i
j(xi; y), for some g̃ij : Ki ×X → R.

Condition D2 still offers many choices for Ũ . For instance, any
of the Ũ presented in Sec. 2.2 are usable. Some examples where
condition D3 can be readily satisfied are:
−Individual nonconvex constraints: Each gj (still nonconvex) de-
pends only on one of the block variables x1, . . . ,xI , i.e, gj(x) =
gij(xi), for some gij : Ki → R and i;
−Separable nonconvex constraints: Each gj has the form gj(x) =∑
i g
i
j(xi), with gij : Ki → R;

−Nonconvex constraints with Lipschitz gradients: Each gj is not
necessarily separable but has Lipshitz gradient on K. In this case
one can choose, e.g., the approximation g̃j as in (3).

Under Assumptions 1−4, each subproblem (Pν ) becomes

min
x

∑I
i=1 Ũi(xi; x

ν)

s.t.

∑
i g̃
i
j(xi; x

ν) ≤ 0, j = 1, . . . ,m

xi ∈ Ki, i = 1, . . . , I.

(P̃ ν )

The block separable structure of the objective functions as well
as that of the constraints lends itself to a parallel decomposition of
the subproblems (P̃ ν ) in the primal or dual domain, resulting in a
distributed implementation of Step 2 of Algorithm 1. For instance,
one can use standard primal/dual decomposition techniques [11, 12].
To the best of our knowledge, this is the first attempt to obtain dis-
tributed algorithms for (P) in its generality. Because of space limita-
tion, we omit further details and refer to [29]. Here we only observe
that, if there are only individual constraints in (P), given xν , each
(P̃ ν ) can be split in I independent subproblems in the variables xi,
even if the original nonconvex U is not separable.

3. CASE STUDY: MAX-MIN FAIRNESS IN IB NETWORKS

In this section we show how to customize the proposed framework
to a novel rate profile maximization problem over IBCs; see [29] for
many other applications.
System model. Consider a broadcast cellular system composed of
K cells; each cell k ∈ KBS , {1, . . . ,K}, contains one Base Sta-
tion (BS) equipped with Tk transmit antennas and serving Ik Mobile
Terminals (MTs). We denote by ik the i-th user in cell k, equipped
with Mik antennas; the set of users in cell k and the set of all the
users are Ik , {ik : 0 ≤ i ≤ Ik} and I , {ik : k ∈ KBS, ik ∈
Ik}, respectively. The optimization variables of each BS k are the
covariance matrices Qk , {Qik}ik∈Ik of the signals transmitted to
the Ik users in the cell, with each Qik ∈ CTk×Tk being the covari-
ance matrix of the information symbols of user ik.

The power budget constraint of each BS is
∑Ik
i=1 tr(Qik ) ≤ Pk.

Additional constraints on Qk, such as interference, per-antenna peak
power, null constraints, etc., may also be considered, and will be
written in the general form Qk ∈ Qk, where Qk is a given convex
and closed set (with nonempty relative interior [32]). The set of all
the constraints of each BS k ∈ KBS will be denoted byZk , {Qk ,
{Qik}ik∈Ik : Qik � 0, Qk ∈ Qk,

∑Ik
i=1 tr(Qik ) ≤ Pk}.

Treating the intra-cell and inter-cell interference at each MT as
noise, the maximum achievable rate of each user i in the cell k is

Rik (Q) , log det
(
I + HikkQikHH

ikkR̄ik (Q−ik )−1
)

(5)

where Hikl ∈ CMik×Tl represents the channel matrix between
BS l and MT ik; R̄ik (Q−ik ) , Rwik

+
∑
j 6=i HikkQjkHH

ikk
+∑

l6=k
∑
j∈Il

HiklQjlH
H
ikl

is the covariance matrix of the Gaus-

842



sian thermal noise (assumed to be full-rank) plus the intra-cell (sec-
ond term) and inter-cell (last term) interference; and we used the
notation Q−ik , (Qjl)(j,l)6=(i,k) and Q , {Qik}ik∈I .
Problem formulation. Providing max-min fairness has long been
considered an important design criterion for wireless networks. Here
we propose the following rate profile optimization problem: given
the profile (αik )ik∈I , with each αik > 0 and

∑
i,k αik = 1, let

max
Q=(Qk)k∈KBS ,R̄

R̄

s. t. Qk = (Qik )ik∈Ik ∈ Zk, ∀k ∈ KBS

Rik (Q) ≥ αik R̄, ∀ik ∈ I.

(6)

Special cases of (6) have already been studied in the literature;
[23, 24] studied the rate profile optimization over MISO or single
stream MIMO ICs (which are simpler models than the IBC); the
max-min fairness problem (corresponding to equal αik ) has been
recently considered in [25] under standard power constrains (i.e.,
without the additional constraintsQik ). The algorithms proposed in
the aforementioned works are thus not applicable to solve the more
general formulation (6); moreover they are all centralized.
Algorithmic design. Problem (6) is an instance of (P); we can then
readily use Algorithm 1. We briefly discuss next two approximations
for the nonconvex constraints Rik (Q) ≥ αik R̄, both satisfying As-
sumption 3 but leading to two alternative SCA algorithms.
Approximation # 1. Since each rate function has the DC structure:

Rik (Q) = f+
ik

(Q)− f−ik (Q−ik ), (7)

with f+
ik

(Q) = log det
(
R̄ik (Q−ik ) + HikkQikHH

ikk

)
and

f−ik (Q−ik ) = log det(R̄ik (Q−ik )), a natural tight lower bound of
Rik (Q) can be obtained by linearizing f−ik , which leads to the fol-
lowing rate approximation functions [cf. (2)]: given Qν � 0,

Rik (Q) ≥ R̃ik (Q; Qν) , f+
ik

(Q)− f̃−ik (Q−ik ; Qν) (8)

where, introducing 〈A,B〉,Re{tr(AHB)}, f̃−ik (Q−ik ) is given by

f̃−ik (Q−ik ; Qν) , f−ik (Qν
−ik ) +

∑
(j,l)6=(i,k)

〈
Π−ik jl(Q

ν
−ik ),Qjl −Qν

jl

〉
,

(9)
with Π−ik jl(Q

ν
−ik ) , ∇Q∗jl

f−ik (Qν
−ik ) = HH

ikl
R̄−1
ik

(Qν
−ik )Hikl

[33]. Using R̃ik (Q; Qν), the ν-th approximate strongly convex
problem (Pν ) becomes: given Xν , (Qν , R̄ν) and τR̄ > 0,

X̂(Xν) , argmax
Q,R̄

{
R̄− τR̄

2
(R̄− R̄ν)2 − τQ ‖Q−Qν‖2

}
s. t. Qk = (Qik )i∈Ik ∈ Zk, ∀k ∈ KBS

R̃ik (Q; Qν) ≥ αik R̄, ∀ik ∈ I,
(P̃ ν )

whose solution X̂(Xν) can be efficiently computed using conven-
tional optimization packages. Given X̂(Xν), one can now use Al-
gorithm 1, whose convergence is guaranteed by Theorem 1 (one can
check that every limit point of {Xν} whose Q-part is not all zero
is regular). It is important to remark that X̂(Xν) can also be com-
puted in a distributed way by introducing proper slack (duplicating)
variables and hinging on the Alternating Direction Method of Mul-
tipliers (ADMM); see [29] for details.
Approximation # 2. An alternative distributed solution method to
the ADMM for (6) can be obtained exploring a different approxi-
mation of the rates (7). Invoking the Lipschitz continuity of each
∇Q∗jl

f+
ik

(Q) with constant L∇ik jl (whose explicit expression is
omitted, see [29]), the following lower bound holds for each rate [cf.
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(3)] and given Qν � 0: Rik (Q) ≥ g̃ik (Q; Qν) , f̃+
ik

(Q; Qν) −
f̃−ik (Q−ik ; Qν)−

∑
j,l L∇ik jl ‖Qjl−Qν

jl
‖2, where f̃−ik (Q−ik ; Qν)

is defined in (9), and

f̃+
ik

(Q; Qν) , f+
ik

(Qν) +
∑
j,l

〈
Π +
ik jl

(Qν),Qjl −Qν
jl

〉
, (10)

with Π +
ik jl

(Qν) = HH
ikl

(
R̄ik (Qν

−ik ) + HikkQ
ν
ik

HH
ikk

)−1
Hikl.

Using g̃ik we can now define a different sequence of subprob-
lems (Pν ) having the form of (P̃ ν ) but where the approximate func-
tions R̃ik in the constraints are replaced by g̃ik . Since g̃ik is sep-
arable in the users covariance matrices (Qik )i,k, this problem can
be solved in a distributed way using standard decomposition tech-
niques; we omit further details because of space limitation, see [29].
Numerical results. We present now some numerical experiments
comparing five different approaches for IBCs, namely: 1) the Max-
Min WMMSE [25] for maximizing the minimum rate of the system
[a special case of (6)]; 2) our Algorithm 1 based on the best-response
X̂(Xν) in (P̃ ν ); 3) the WMMSE algorithm [34] and the partial
linearization-based algorithm (termed SJBR) [8] proposed for the
maximization of the system sum-rate; 4) the partial linearization-
based algorithm [8] maximizing the geometric mean of the rates
(the proportional fairness utility function), termed GSJBR. To al-
low the comparison, we consider a special case of (6) as in [25].
We simulated a 4 cell IBC with 3 randomly placed active MTs per
cell; the BSs and MTs are equipped with 4 antennas. Channels are
Rayleigh fading, whose path-loss are generated using the 3GPP(TR
36.814) methodology [35]. We assume white zero-mean Gaussian
noise at each receiver, with variance σ2, and same power budget
P for all the BSs; the SNR is then snr = P/σ2. Algorithm 1
is simulated using τR̄τQ = 1e−7 and the step-size rule γν =
γν−1(1 − 10−3γν−1), with γ0 = 1. The same step-size rule is
used for SJBR and GSJBR (the former with no proximal regulariza-
tion). In Fig. 1 we plot the minimum rate versus snr achieved by
the aforementioned algorithms. All results are averaged over 300 in-
dependent channel/topology realizations. The figures show that our
algorithm yields substantially more fair rate allocation in the system
than all the other algorithms (i.e., larger minimum rates). As ex-
pected, we observed that SJBR and WMMSE achieve higher sum-
rates (not reported in the figure) while sacrificing the fairness; indeed
Fig. 1 shows that SJBR and WMMSE can shut off some users (the
associated minimum rate is zero).

4. CONCLUSIONS
In this paper, we proposed a general algorithmic framework based
on SCA for the solution of nonconvex smooth optimization prob-
lems. Some key new features of our scheme are: i) it maintains
feasibility and leads to parallel and distributed solution methods for
a very general class of nonconvex problems; ii) it includes as special
cases several classical SCA-based algorithms and improves on their
convergence properties; and iii) it provides new efficient algorithms
also for old problems. Finally, when customized to a novel rate pro-
file maximization problem over IBCs, the algorithm was shown to
outperform ad-hoc existing schemes.
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