
LOW POWER IMPLEMENTATION OF DIGITAL PREDISTORTION FILTER ON A
HETEROGENEOUS APPLICATION SPECIFIC MULTIPROCESSOR

Amanullah Ghazi1 , Jani Boutellier1, Mahmoud Abdelaziz2, Xiaojia Lu1, Lauri Anttila2, Joseph R.
Cavallaro3, Shuvra S. Bhattacharyya4, Mikko Valkama2, Markku Juntti1

1University of Oulu, Dept. Computer Science and Engineering, Finland
2Tampere University of Technology, Dept. Electronics and Communications Engineering, Finland

3Rice University, ECE Department, Houston, TX
4University of Maryland, ECE Department, College Park, MD

ABSTRACT

Power-constrained mobile radio communication transmitters drive
their transmit power amplifiers close to their saturation regions,
which results in nonlinear intermodulation distortion that is
especially harmful in multi-cluster and carrier aggregation
transmission scenarios. Digital predistortion is a method for
linearizing the transmitter and suppressing the most harmful
spurious emissions at the transmitter power amplifier output. This
paper describes a programmable implementation of a digital
predistortion filter on a heterogeneous Transport Trigger
Architecture (TTA) multiprocessor. The predistortion algorithm is
based on a parallel Hammerstein polynomial model and the
experimental results show that the proposed programmable
architecture is capable of linearizing a 20 MHz LTE carrier in real-
time with a power consumption that is suitable for mobile devices.

Index Terms— Predistortion, Digital signal processing,
Multicore processing

1. INTRODUCTION

Mobile radio communication transmitters often use complex in-
phase and quadrature phase mixers [1] that provide the flexibility
needed for building software defined radio (SDR) systems.
However, these direct conversion transceivers have several
imperfections arising from the nonlinearities and non-ideal
behavior of analog RF and digital baseband transceiver
components. Moreover, power-constrained mobile transmitters
drive their transmit power amplifiers close to their saturation
regions [2], which results in nonlinear intermodulation distortion
that is especially harmful in multi-cluster and carrier aggregation
(CA) transmission scenarios [3].

Digital predistortion (DPD) can be used to compensate these
impairments and to suppress the most harmful spurious emissions
at the transmitter power amplifier output by predistorting the
baseband signal before transmission.1

Building flexible radio transceivers requires the use of
configurable (ideally software programmable) components.

This work was supported in part by the US National Science
Foundation under grants CNS–1265332 and CNS–1264486 as well
as by the Finnish Funding Agency for Technology and Innovation
under the project “Cross-Layer Modeling and Design of Energy-
Aware Cognitive Radio Networks (CREAM)”.

Traditionally, signal processing algorithms requiring high
throughput have been implemented as hardwired circuits. Hard-
wired implementations consume minimum energy but are slow to
design and lack the flexibility of programmable implementations.
On the other hand, off-the-shelf Digital Signal Processors provide
programmability, but unfortunately have higher cost and energy
consumption compared to hardwired implementations.

Application specific processors offer a compromise between
these two extremes. They provide a low-cost and low-energy
platform for programmable implementation of signal processing
algorithms. This paper describes an application-specific
multiprocessor for digital predistortion. The processors are based
on the Transport Triggered Architecture (TTA) paradigm [4, 5],
which provides programmability with high energy-efficiency [6].

The results of this paper show that digital predistortion can be
implemented by programmable hardware with a power
consumption that is suitable for mobile devices. Interestingly, the
resulting multiprocessor architecture closely resembles that of
mobile graphics processors [7], which could open up a possibility
for sharing computational resources on mobile devices that often
are power- and cost-limited.

2. DIGITAL PREDISTORTION

The proposed predistortion filter design is based on the algorithm
presented by Anttila et al. [8], but has been modified slightly
compared to the original version in order to save on the number of
computations required. The initial feasibility study of the DPD
filter has been performed by considering different DPD parameters
and estimating processing resources [9]. Based on the feasibility
study, a feasible use case of the DPD filter has been selected and
implemented. This paper presents the design and results of the
implemented DPD filter.

The structure of the predistortion algorithm is presented in
Fig. 1. The predistortion filter is based on a parallel Hammerstein
(PH) model with polynomial nonlinearities, given as [8]

(ݔ)݂ = ݂, ∗
∈ூು

߰(ݔ) (1)

where xn is the input sample, fp,n are FIR filters with M taps each, *
denotes convolution, and IP is the set of polynomial orders used.

The polynomial basis functions are defined as

߰(ݔ) = ∑ ,∈ூುݑ 					,	ݔ|ିଵݔ| ∈ ܫ , (2)

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 8391

with uk,p denoting the polynomial weights. If all polynomial orders
up to P are considered, IP = {1, 2, 3, ... , P}, and when only odd
order polynomials are used, IP = {1, 3, 5, ... , P}. The square root

ψ1(.)

ψ2(.)

ψp(.)

F1(z)

F2(z)

Fp(z)

F1(z)

F2(z)

(.)*

(.)*

(.)* Fp(z)

c’

.

.

.

1, 1, ...

xn zn

Fig. 1. Predistorter structure.

computation while computing -|ିଵ can be avoided if only oddݔ|
order polynomials are used, which is a computation-saving option
that has been chosen in the proposed implementation.

The polynomial weights uk,p determine the type of the
polynomials used. The basis function description in (2) allows
using either conventional polynomials (when setting uk,p = 0, k ≠
p), or orthogonal polynomials, such as those described in [10].

The maximum polynomial order used can be different for the
conjugate and non-conjugate branch of the predistorter. When
using two sets of polynomials, for the non-conjugate branch IP =
{1, 3, 5, … , P} and for the conjugate branch IQ = {1, 3, 5, … , Q},
the output of the predistortion filter can be given as

ݖ = ݂,
∈ூು

∗ ߰(ݔ) + ݂,
∈ூೂ

∗ ߰(ݔ) + ܿᇱ ,	 (3)

where fp,n are the filter coefficients and c’ is the estimated
compensation for LO leakage. [8]

The filters FP(z), FQ(z) are FIR filters whose coefficients are
estimated considering the impairments from the power amplifier
and the IQ modulator. The number of filters in the non-conjugate
branch (NP) and in the conjugate branch (NQ) can be the same or
differ. [8]

3. PREDISTORTION FILTER DESIGN

As a motivational example for predistortion we consider a
predistortion filter with polynomial order 5 and maximum filter
lengths of 5. The sampling rate is set to 92.16 MHz, which enables
linearizing either a) one 20 MHz LTE carrier, b) two 10 MHz LTE

carriers through contiguous CA, or c) four 5 MHz LTE carriers
through contiguous CA. In this section we present a programmable
predistorter implementation that adheres to these requirements.

3.1. Dataflow modeling of predistortion filter software

Initially, the predistortion filter was modeled using a dataflow
description based on a specific, DSP-oriented dataflow
programming model called lightweight dataflow [11] later to be
implemented on separate processors. Following the dataflow
paradigm, node computation is managed using first-in-first-out
(FIFO) buffers.

The synchronous dataflow model [12] (that is supported by
lightweight dataflow) is well-suited for modeling the proposed
predistortion filter, as the nodes of the dataflow graph (see Fig. 2)
have constant sample rates. The dataflow implementation of the
algorithm consists of two dataflow node types, namely 1)
computation of polynomial basis functions ψP, ψQ and 2) FIR
filtering FP(z), FQ(z).

Polynomial
Computation

Filter
Coefficient
Estimation

Filter 1

Filter 2

Filter N

Input
Samples

Accumulator Predistorted
Samples

.

.

.

Fig. 2. Dataflow model of the predistortion filter.	
	
3.1.1. Polynomial computation
The dataflow node for computing polynomials reads samples
coming from the transmitter baseband through an input FIFO and
computes the polynomial basis functions using equations (1) and
(2). The polynomial weights (uk,p) are assumed to be precomputed,
and since only odd polynomial orders are used, computation of
.|ିଵ does not require square root computationsݔ|

The dataflow node responsible for computing the polynomials
also distributes the computed polynomial values to the filters FP(z),
FQ(z). The node also conjugates the computed polynomial values
for FQ(z) before writing to the output FIFO.

3.1.2. FIR filtering
The traditional shift-register based FIR filter implementation needs
shifting of the input values during each iteration which complicates
the parallelization of the filter. To enable parallel filter
implementation, the FIR filter is implemented using ping-pong
buffers and a windowing technique.

Initially, samples are read into the p buffer while the p’ buffer
contains the previous samples (zeros during the first iteration). A
filtering window is defined containing the current and previous
samples needed for FIR filtering. Once the filtering window
reaches the end of the p buffer, the next input sample is read to the
beginning of the p’ buffer. p’ and p buffers are then interchanged

8392

for the next iteration. An iteration of ping-pong buffer based FIR
filtering is shown in Fig. 3.

With ping-pong buffering of the FIR filter, shifting of input
samples from one register to another is avoided. Also, the software
compiler has better chances of parallelizing the algorithm as
multiple input samples are allowed to be read at once and more
than one filtering windows is in use concurrently. Note that the
buffers are allocated to the processors’ internal register files and
therefore the processors for FIR filtering do not need data memory.

Current
Sample

Next
Sample

Filtering window

Ping buffer Pong buffer

Pong buffer Ping buffer

Current
Sample

Next
SampleFiltering window

Current
Sample

Next
Sample

Ping buffer Pong buffer

Filtering window

Fig. 3. FIR filtering with ping-pong buffers.
	
3.1.3. Accumulator
The accumulator reads filtered samples from each filter and sums
them together. The accumulator also acquires the LO leakage
compensation value (c’) from the filter parameter estimator (that is
not a part of our design) and adds it to the final output. The
accumulator can be implemented in non-programmable hardware
for the obvious reason of its simplicity.

3.1.4. Parameter Estimation
The predistorter parameters (filter coefficients, LO leakage) need
to be estimated and provided to the predistortion filter. The
parameters need to be updated when the operating conditions (e.g.
temperature, PA operating point, carrier frequency) of the
transmitter change. This can be done in parallel with the operation
of the predistortion filter and is not considered to be on the critical
path of the digital predistortion system.

In the presented design the predistorter parameters are read to
the FIR filters from a specific input FIFO at filter initialization.
Thus, run-time update of the parameters was not considered in the
experiments presented here.

3.2. TTA processor architecture

The programmable processors used in our predistorter design are
of the Transport Triggered Architecture type. TTA processors
resemble Very Long Instruction Word processors (VLIW) in the
sense that they fetch and execute multiple instructions each clock
cycle. Moreover, TTA processors provide an exposed datapath
where the compiler directly programs the data transports inside the
processor. Direct programming of data transports reduces register

file traffic when compared to conventional VLIWs [4] and
simplifies the processor architecture as instruction scheduling and
register assignment decisions are made off-line by the compiler.
Hence there are savings on gate count and energy consumption.

Design of application-specific TTA processors for the
proposed design was done by the open-source TTA Codesign
Environment (TCE) toolset [5]. The TCE toolset enables the
designer to fully define the number of function units, register files
and processor buses. Furthermore, the processor can also be
equipped with custom instructions and use an arbitrary data word
size. In the presented design, no custom instructions are used; all
processor instructions are generic and can be used for running
other applications as well.

3.3. Half-precision floating point arithmetic

Fixed-point computations are not well-suited for predistortion
filtering due to the polynomial basis function computations that
require computing of exponentials and thus a high dynamic range.
For this reason, a floating point data type is used throughout the
proposed implementation. Unfortunately, the single (32-bit) and
double precision (64-bit) floating point operations have a high
computational latency (5 clock cycles for 32-bit in our processor
design framework) even when implemented in hardware.

Fortunately, satisfactory computational latency and dynamic
range is achieved by using the half-precision floating point number
format. The IEEE 754 standard defines 16-bit half-precision
floating numbers that have 5 bits for the exponent, 10 bits for the
fraction and 1 bit for the sign [13]. Previously, the half-precision
floating point format has been used on a TTA processor by
Janhunen et al. [6]. The added noise from using the 16-bit floating
point format is discussed in Section 4.

3.4. TTA multiprocessor design

The computational complexity of the predistortion filter depends
on multiple parameters. The maximum orders of the polynomials
for non-conjugate (P) and conjugate (Q) branches determine the
number of filters needed. Since we are using only odd-order
polynomials, the number of filters is given by

ܰ௧ =
ܲ + 1

2 +
ܳ + 1

2
 (4)

Computation of the polynomial basis functions is a sequential
procedure and thus performed on a single processor. As the
maximum order of polynomials is much smaller than the number
of FIR filter taps, the computation of polynomials is less complex
than FIR filtering.

Two types of TTA processors were needed; one processor
type is specifically designed for polynomial computation and the
processor type is specifically for FIR filtering. Heeding the
dataflow paradigm, each processor executes its program
independently and communicates with other processors over FIFO
buffers only. Resulting multiprocessor system is similar to the
design presented in [14].

Table 1. Predistortion filter specification.

Parameter P branch Q branch
Max. polynomial order 5 3

Number of filters 3 2
Taps per filter 5 5

8393

Table 2. Processing resources for TTA processors.

Processing resources Polynomial
comp. processor

FIR filter
processor

Multipliers 8 12
Add/subtractors 3 16

Integer ALU 1 1
FIFO I/O units 12 5

Reg. Files (8 slots each) 5 15
Buses 18 33

4. IMPLEMENTATION AND RESULTS

A predistortion filter (with the parameters listed in Table 1) was
implemented as a TTA multiprocessor. One processor was needed
for polynomial computations and five processors for FIR filtering.
The processors are software programmable and can thus be
reconfigured or be used for other computations as well.

Having a separate processor for each FIR filter makes the
design scalable: the polynomial order of the implemented
predistorter can be increased by adding more FIR processors as far
as the performance of the polynomial computation processor
suffices.

The processing resources used in both processor types are
listed in Table 2. All the resources have a word length of 16 bits;
the multipliers and add/sub units perform half-precision 16-bit
floating point operations except for the Arithmetic-Logical Unit
(ALU) that supports mandatory integer operations.

Table 3. Synthesis results for 90nm low-leakage CMOS.

Polynomial comp. FIR
fMAX (MHz) 125 MHz 125 MHz

Gates (NAND eq.) 71247 165214
Average Power (mW) 11.3 26.8
Energy / sample (nJ) 0.25 0.69

Throughput Ms/s 44.6 39.1

Table 4. Synthesis results for 45nm CMOS.

Polynomial comp. FIR
f (MHz) 320 MHz 320 MHz

Gates (NAND eq.) 62404 116822
Throughput Ms/s 114.3 100.0

4.1. Processor synthesis results

The two predistortion filter processor types were synthesized
separately using the UMC 90 nm low-leakage low-k standard cell
library [15] (FO4 delay estimated as 41 ps) and the Synopsys
Design compiler. The operating conditions (temperature,
operating voltage, manufacturing process quality) for synthesis
were set to default values (TCCOM). The synthesized
processors were simulated using Mentor Graphics ModelSim and
the power consumption measurements were performed using
Synopsys PrimeTime with signal transitions acquired from
simulation. The synthesis results for the two processors are listed
in Table 3. The total power dissipation for the six processors was
145.3 mW without memories.

The FIR filter processor takes 3.2 cycles/sample to execute
and the polynomial computation processor is somewhat faster: 2.8
cycles/sample. In the motivational example (Section 3) a 92.16
Msamples/s input signal is predistorted with a filter of the
specifications given in Table 1. However, Table 3 shows that the

implementation remains from the required performance by a factor
of 2.3. Fortunately, this gap in computational performance can be
compensated by 1) moving from the low-leakage standard cell
library to a standard performance library [16] (for UMC 90 nm
FO4 = 41 ps à FO4 = 25 ps [17]) and 2) using a more up-to-date
technology node such as 45 nm (FO4 = 16.7 ps [18]). To verify
that the throughput requirements can indeed be met with 45nm
technology, the two processors are synthesized with TSMC 45nm
standard cell library with a target frequency of 320 MHz. The
45nm synthesis results are presented in Table 4.

4.2. Linearization performance

The proposed design uses a reduced-accuracy 16-bit floating point
number format, whose effect on the algorithm performance needs
to be explicitly analyzed.

As a reference, a random white Gaussian noise input signal
was filtered with the same algorithm implemented using 64-bit
double precision floating point format. The reference output was
then compared against the 16-bit floating point result of the same
random signal and the signal-to-noise ratio (SNR) compared to the
reference computation was measured to be 46.5 dB.

Considering this limited computational accuracy (SNR) of the
DPD, a simulation was performed for a CA scenario of two 10
MHz LTE carriers with 5 Resource Blocks allocated per carrier
(i.e. 1 MHz BW per carrier). Fig. 3. shows the resulting overall
intermodulation suppression and Fig. 4. a more detailed view with
the LTE spurious emission limit that is achieved with the proposed
filter. In the simulation, the power amplifier 1 dB compression
point was assumed to be 26.5 dBm and modeled with a 5th order
Wiener architecture. The transmission power was set to 22.0 dBm.

Fig. 4. Intermodulation suppression without predistortion, with
classical 7th order wideband linearization and the predistorter used
in the presented design (weighted DPD).

5. CONCLUSION

We have presented a programmable heterogeneous multiprocessor
for digital predistortion filtering. The processor is capable of
linearizing a 20 MHz LTE carrier in real time with a power
dissipation that makes the solution feasible for mobile devices.

8394

6. REFERENCES

[1] P.-I. Mak, S.-P. U, R. P. Martins, "Transceiver architecture
selection: review, state-of-the-art survey and case study," IEEE
Circuits and Systems Magazine. IEEE, 2007, vol.7, pp. 6-25.

[2] A. Katz, R. Gray, and R. Dorval, "Truly wideband
linearization," IEEE Microwave Magazine, IEEE, 2009, vol. 10,
pp. 20-27.

[3] E. Dahlman, S. Parkvall, J. Sköld, "4G LTE/LTE-Advanced for
Mobile Broadband," Elsevier Ltd., 2011.

[4] H. Corporaal, "Microprocessor architectures: from VLIW to
TTA," J. Wiley, 1998.

[5] O. Esko, P. Jääskeläinen, P. Huerta, C. S. de la Lama, J.
Takala, J. I. Martinez, "Customized exposed datapath soft-core
design flow with compiler support", Proc. International
Conference on Field Programmable Logic and Applications. IEEE,
2010, pp. 217-222.

[6] J. Janhunen, T. Pitkänen, O. Silvén, M. Juntti, "Fixed- and
floating-point processor comparison for MIMO-OFDM detector,"
IEEE Journal of Selected Topics in Signal Processing, IEEE, 2011,
vol. 5, pp. 1588-1598.

[7] Arm Ltd. "Mali-400 MP: A Scalable GPU for Mobile Devices,"
http: //www.highperformancegraphics.org/previous/
www_2010/media/Hot3D/HPG2010_Hot3D_ARM.pdf.

[8] L. Anttila, P. Händel, M. Valkama, "Joint mitigation of power
amplifier and I/Q modulator impairments in broadband direct-
conversion transmitters," IEEE Transactions on Microwave Theory
and Techniques. IEEE, 2010, vol.58, pp. 730-739.

[9] M. Abdelaziz, A. Ghazi, L. Anttila, J. Boutellier, T.
Lähteensuo, X. Lu, J.R. Cavallaro, S.S. Bhattacharyya, M. Juntti,
M. Valkama, “Mobile transmitter digital predistortion: feasibility
analysis, algorithms and design exploration”, Asilomar Conference
on Signals, Systems, and Computers, 2013.

[10] R. Raich, G. T. Zhou, "Orthogonal polynomials for complex
Gaussian processes," IEEE Transactions on Signal Processing.
IEEE, 2004, vol. 52, pp. 2788–2797.

[11] C. Shen, W. Plishker, H. Wu, and S. S. Bhattacharyya, "A
lightweight dataflow approach for design and implementation of
SDR systems," Proc. Wireless Innovation Conference and Product
Exposition. Wireless Innovation Forum, 2010, pp. 640-645.

[12] E. A. Lee, D. G. Messerschmitt, "Synchronous data flow,"
Proceedings of the IEEE, IEEE, 1987, vol. 75, pp. 1235-1245.

[13] "IEEE standard for floating-point arithmetic", IEEE standard
754-2008, Aug. 29, 2008.

 [14] J. Boutellier, O. Silvén, M. Raulet, "Automatic synthesis of
TTA processor networks from RVC-CAL dataflow programs,"
Proc. IEEE Workshop on Signal Processing Systems. IEEE, 2011,
pp. 25-30.

[15] Faraday technology, "90nm low-k low leakage regular-Vt
standard cells," Product brief v. 1.2.

[16] Faraday technology, "90nm standard performance low-k
standard cells," Product brief v. 1.0.

[17] A. Chang, W. J. Dally, "Explaining the gap between ASIC
and custom power: a custom perspective,” Proc. 42nd annual
Design Automation Conference. ACM, 2005, pp. 281-284.

[18] D. Baran, M. Aktan, V. G. Oklobdzija, "Energy efficient
implementation of parallel CMOS multipliers with improved
compressors," Proc. International Symposium on Low Power
Electronics and Design. ACM, 2010, pp. 147-152.

8395

