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ABSTRACT
Time-to-market and implementation cost are high-priority consider-
ations in the automation of digital hardware design. Nowadays, dig-
ital signal processing applications are implemented into fixed-point
architectures due to its advantage of manipulating data with lower
word-length (WL). Thus, floating-point to fixed point conversion is
mandatory. However, this conversion is translated into optimizing
the integer word length (IWL) and fractional word length (FWL).
Optimizing the IWL can significantly reduce the cost when the ap-
plication is tolerant to a low probability of overflows. In this paper,
we propose a new IWL optimization algorithm that exploits selective
simulation technique to reduce both the implementation cost and op-
timization time. The efficiency of the algorithm is illustrated through
experiments, where 17 to 22 % of cost reduction with respect to in-
terval arithmetic and acceleration factor up to 617 with respect to
classical max-1 algorithm are reported.

Index Terms— Fixed-point arithmetic, overflow, fixed-point
simulation acceleration, fixed-point optimization.

1. INTRODUCTION

DSP applications implemented in most embedded systems are
severely constrained by cost, area, power and execution time. Us-
ing fixed-point arithmetic allows satisfying such constraints thanks
to its ability in manipulating data with lower WL compared to
floating-point arithmetic. Thus, DSP algorithms are implemented
into fixed-point architectures and floating-point to fixed-point con-
version is mandatory. The appearance of High Level Synthesis tools
[1, 2] that generate the hardware directly from an abstract C-like
code makes this conversion one of the most time consuming part
in the hardware design. Thus, time-to-market reduction requires
efficient tools to automate the fixed-point architecture synthesis.

The conversion process is an optimization problem [3] divided
into two parts corresponding to the determination of the IWL and
the FWL. Most of the work is focused on optimizing the FWL while
satisfying the accuracy constraint. Nevertheless, optimizing the IWL
can significantly decrease the implementation cost when a slight
degradation of the application performance is acceptable [4]. In-
deed, many applications are tolerant to overflows if the probability
of overflow occurrence is low enough.

The IWL optimization is based on determining the data dynamic
range. Static analysis methods based on interval arithmetic [5] or
affine arithmetic [6] guarantee no overflow. However, they are pes-
simistic and lead to implementation over-cost. In [7], a combina-
tion of statistical approaches, as in [8], and analytical approaches is
proposed to determine the dynamic range and the saturation mode.
Their aim is to overcome pessimistic results associated with analyti-
cal approaches. However, this approach does not provide any infor-

mation on the overflow occurrence. However, implementation cost
can be improved by minimizing the IWL if low probability of over-
flow occurrence is acceptable. In this context, different techniques
have been proposed to determine the probability density function of
any type of data. They allow determining the dynamic range for a
given overflow occurrence probability. These techniques are based
on Extreme Values Theory [9, 10, 11] or stochastic approaches like
Karhunen-Loeve expansion [12, 13] and Polynomial Chaos Expan-
sion [14]. However, establishing the link between the application
quality criteria and overflow occurrence probability is not trivial in
general case. Intuitively, simulation based methods [15, 16, 17] are
used to evaluate overflow effects on application quality for fixed-
point systems. Although simulations can be performed on any kind
of system, they are time consuming and require large number of sam-
ples to obtain accurate analysis. This results in a serious limitation
on the applicability of simulation based methods.

In this paper, the determination of the IWL for each data is mod-
elled as an optimization problem and a new IWL optimization al-
gorithm is proposed. This algorithm efficiently exploits selective
simulation based technique used to evaluate the effects of overflow
on application quality criteria. On one hand, this technique acceler-
ates the simulation of overflow effect analysis used in the optimiza-
tion process. On the other hand, the proposed algorithm reduces the
implementation cost by optimizing the IWL. The efficiency of the
proposed algorithm is illustrated through experiments. The rest of
the paper is organized as follows. The IWL determination process is
modelled as an optimization process in Section 2. In Section 3 the
technique used to evaluate the overflow effects is summarized and
the proposed optimization algorithm is detailed. Experiments and
results are presented in Section 4. Finally, Section 5 draws conclu-
sions.

2. WORD-LENGTH OPTIMIZATION PROBLEM

Optimizing the WL in fixed-point systems is essential to control the
overflow occurrence and minimize implementation cost. Classical
metrics for calculating implementation cost are area, clock period,
latency and power consumption. The optimization process aims at
minimizing the implementation cost C while the application quality
λ is greater than a minimal value λmin

min (C(wd)) subject to λ (wd) > λmin (1)

where wd is a N -length vector containing the word-length of
each data.

Fixed-point conversion aims at choosing a fractional part word-
length wf that serves a sufficiently large computation accuracy for
the application and an integer part word-length w that limits over-
flow occurrence. To determine the data word-length wd = w + wf ,
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a trade-off between high computation accuracy and overflow occur-
rence has to be investigated.

In classical fixed-point conversion techniques, the integer part
word-length is computed so that no overflow occurs. Thus, deter-
mining the data word-length is split into two steps. First, the dy-
namic ranges of the different data are evaluated to determine the
number of bits of the integer part. Second, the number of bits of the
fractional part is optimized such that the quantization noise, due to
the finite word-length, is sufficiently low to maintain the application
quality.

In advanced fixed-point conversion techniques, the aim is to op-
timize both the IWL and the FWL. To obtain reasonable complexity
for the fixed-point conversion, the process of IWL and FWL determi-
nation are handled separately. For determining the IWL, the problem
can be expressed as follows

min (C(w + w̃f )) subject to ∆λ (w) < ∆λmax (2)

where ∆λ is the application quality degradation due to overflow
and ∆λmax is the maximum acceptable quality degradation.

The calculation of the cost requires the knowledge of the global
word-length wd. Thus, the fixed-point conversion process is decom-
posed into three steps. First, the data dynamic range is evaluated
with interval arithmetic or affine arithmetic guaranteeing no over-
flow occurrence. This step gives a maximum value wIA for each
IWL. Second, w̃f is obtained by optimizing the FWL while using
wIA as IWL. Third, the IWL is optimized with the approach pre-
sented in Section 3 and w̃f is used as FWL.

3. PROPOSED ALGORITHM

The IWL optimization is carried-out with a greedy based algorithm
that minimizes the implementation cost until the performance degra-
dation constraint is satisfied. Figure 1 presents our IWL optmiza-
tion approach combining the proposed optimization algorithm and
selective simulation technique for overflow effect evaluation. The
proposed algorithm consists of three phases: initial phase, construc-
tion phase and refinement phase. The first phase leads to an initial
solution for which the performance degradation is still null. In the
construction phase, a steepest descent algorithm (max-1 bit) is used
for finding a sub-optimal solution wmx1. Then a local search using
Tabu search algorithm is applied to refine the solution in the third
phase. At each iteration, the best direction is selected and the corre-
sponding variable is modified to converge into an optimized solution.

In this procedure, the application quality degradation due to
overflow λ (w) is evaluated many times. Thus, a time efficient tech-
nique is required to accelerate this evaluation. In Subsection 3.1, our
technique to evaluate the degradation due to overflow is presented.

3.1. Overflow effect evaluation

The overflow effect evaluation can be thought of as a technique for
simulation acceleration by using selective simulations. The appli-
cation C source of the system under test (SUT) is instrumented to
collect information and simulate overflow effects by using operator
overloading concept associated with C++ object-oriented language.
The analysis of overflow effects on application quality criteria con-
sists of three main tasks described below.

Index classification: In this step the indices of potential over-
flow for each variable v are identified. The index n for potential
overflow is stored in the structure T if the value v(n) is closed to the
extreme values obtained with interval arithmetic.

Fig. 1. IWL optimization integrating approach for overflow effect
analysis.

Index selection: This step aims at constructing Lsim, the list of
indices to be simulated for a given configuration of IWL. The anal-
ysis of Lsim list allows determining the overflow probability Pov
corresponding to the variable v.

Selective simulation: In this step, the SUT is simulated only for
the different indices of Lsim. No overflow occurs for the indices not
included in Lsim and the output of the reference simulation is used.
Intuitively, selective simulation will accelerate the overflow effect
analysis, especially in the case of limited overflow occurrence.

3.2. Initial solution determination

The aim of the initial phase is finding a starting solution for the con-
struction phase. This phase starts with the solution obtained with
interval arithmetic wIA. In [18], it has been shown that there ex-
ist one or several IWLs for each variable k of the vector w that are
lower than wIA

k and with null Pov . These IWL configurations can
be easily detected using the Index Selection (IS) step. The number
of overflow occurrence is null if the list Lsim contains no element.

The initial phase is presented in Algorithm 1, where the IWL
wk for each variable k is decreased while Pov is null i.e. quality
degradation is null. At each iteration, the Pov of the IWL configura-
tion is determined using IS step. The solution obtained in this phase
is winit.

Algorithm 1 Initial phase

w← wIA

for all 1 ≤ k ≤ N do
while Pov(w) = 0 do

wk = wk − 1
end while
winit
k = wk + 1

end for
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3.3. Construction and refinement phases

The construction phase is based on a steepest descent greedy algo-
rithm (max-1 bit), i.e. the IWL of each variable is reduced while
satisfying the performance criterion. Starting from winit, this phase
allows obtaining a sub-optimal solution. Then, a refinement around
this solution is applied to improve the quality of the solution in the
refinement phase. This phase is carried-out with a Tabu-search al-
gorithm, a heuristic procedure for finding good solutions of com-
binatorial optimization problems [19]. The combination of greedy
algorithm and Tabu search may achieve better local search and avoid
unnecessary movements [20]. The proposed algorithm for construc-
tion and refinement phases is presented in Algorithm 2.

3.3.1. Criterion for direction selection

At each iteration of the algorithm, the IWL of specific variable is
modified to move toward the final solution. To select the best di-
rection, a criterion has to be defined. We consider a criterion that
computes the gradient of the application quality as follows

fλ∇
(
w±k ,wk

)
=
λ
(
w±k

)
− λ (wk)

‖w±k −wk‖
(3)

where wk = [w0, ..., wk, ...wN−1] and w±k = [w1, ..., wk +
d, ...wN−1]. The term d represents the direction and is equal to 1
for middle ascent algorithm (min+1) and −1 for steepest descent
algorithm (max-1). Thus, wk + d corresponds to the previous or
next value of wk.

To improve the decision of the best direction selection, the cost
due to the IWL modification is taken into account. This will give a
good trade-off between the implementation cost and the application
quality. The new criterion selects the direction which minimizes the
cost increase and maximizes the application quality increase as fol-
lows

f
λ/C
∇

(
w±k ,wk

)
=
λ
(
w±k

)
− λ (wk)

C
(
w±k

)
− C (wk)

(4)

3.3.2. Algorithm description

At each iteration, the procedure moves to one of the neighbourhood
of the current solution w according to the value of d. The Tabu
list T is the set of variables no longer used. This list is updated at
each iteration to avoid useless or infinite loops. The next position of
w for each variable k not belonging to T is calculated in line 6 of
Algorithm 2. LetWk, be the set of valid values for the variable k. If
the next position w±k does not belong toWk or leads to an overflow
probability greater than the maximum value Pmax

ov , the variable k is
added to the Tabu list T as shown in line 8. The advantage brought
by this condition is the ability to calculate the number of overflow
occurrence in the IS step as shown in Figure 1. Thus, simulations
are avoided when the overflow occurrence is too high, which results
in a gain of time. If the movement is valid, the criteria for direction
search associated with this variable is evaluated.

The line 13 verifies that the set T is not complete. Then in lines
14 to 29, the variable leading to the best direction is selected. De-
pending on the selected direction, its IWL is increased or decreased
by one bit. When ∆λ(w) exceeds the constraint ∆λmax, the di-
rection d is reversed. The iterative process stops when the set T is
complete.

Algorithm 2 Tabu search in word-length optimization
1: T ← ∅ {Empty list of tabu variables}
2: wopt ← ∅
3: d← −1 {set the direction for steepest descent}
4: while |T | < N do
5: for all 1 ≤ k 6∈ T ≤ N do {calculate criterion}
6: w±k = wk + d
7: if Pov(w±k) ≥ Pmax

ov ∨w±k /∈ Wk then
8: T ← T ∪ {k}
9: else

10: ∇k ← f∇
(
w±k ,wk

)
11: end if
12: end for
13: if |T | < N then
14: if d > 0 then
15: j ← argmax∇k {Steepest descent alg. }
16: wj ← wj + 1
17: if ∆λ(w) ≤ ∆λmax then
18: d← −1
19: T ← T ∪ {j}
20: end if
21: else
22: j ← argmin∇k {Middle ascent alg. }
23: wj ← wj − 1
24: if ∆λ(w) > ∆λmax then
25: d← 1
26: end if
27: end if
28: end if
29: end while
30: wopt ← w
31: return wopt

4. EXPERIMENTS AND RESULTS

4.1. Experiment results

The proposed algorithm can be applied on any application de-
scribed with a C code. For the experiments, an OFDM (Orthogonal
Frequency-Division Multiplexing) receiver is considered. The pro-
posed approach is applied on the FFT part, which is a high compu-
tational part and the most challenging module in the receiver [21].
The radix-2 64-point FFT is implemented with 6 stages carrying-out
the butterfly operations. In these experiments, the effect of overflow
is considered for the output of the 6 stages.

The energy consumption metric is used for calculating the im-
plementation cost C. A library of characterized operators for FPGA
target [22] is used to compute the cost according to the word-length
wd. The performance degradation is evaluated through the Bit Error
Rate (BER) degradation4BER defined as follows

4BER =
BERovf −BERref

BERref
(5)

where BERovf and BERref are the BER obtained respec-
tively with and without overflows. The BERref is the BER ob-
tained in the case of IWL calculated with interval arithmetic.

4.2. Cost-quality trade-off

The IWL optimization is carried-out for different BER degradation
constraints corresponding to the term ∆λmax in equation 2. The op-
timized cost Copt, obtained by our IWL optimization algorithm, is
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Fig. 2. Pareto-curves of the normalized cost Copt and maximum
BER degradation ∆BERmax(%) for different SNR

normalized to the cost obtained with interval arithmetic. Figure 2
represents the curves of the normalized cost as function of the maxi-
mum BER degradation. The curves evolve by levels leading to a step
curve due to the integer values of the IWL.

The obtained curves are Pareto curves decomposed into three
parts. The first part of each curve can be assimilated as a line char-
acterized by a very high slope. The slope of the curve depends on
the probability density function (PDF) of the application input data.
In this example, the input data follow a platykurtic distribution [23]
and the short tails of the PDF result in the very high slope. This
part shows that the implementation cost can be significantly reduced
compared to the starting solution wIA, with a very low BER degra-
dation. The pessimistic solutions obtained with interval arithmetic
explain this phenomena. The second part of each curve corresponds
to the ”bend”. This zone is the interest of the designer, since it repre-
sents a good trade-off between cost and quality. For the three SNR,
the implementation cost is reduced between 16% and 18% with a
low BER degradation. In the third part, the implementation cost can
be reduced but at a high price of BER degradation.

4.3. Optimization time

Comparisons between three approaches have been carried-out to ver-
ify the time efficiency of the proposed algorithm. The approach
Opt+Ssim corresponds to the proposed optimization algorithm de-
scribed in Section 3, which uses selective simulation technique to
evaluate overflow effects summarized in Subsection 3.1. The sec-
ond approach, Mx1+Csim, is a classical steepest descent algorithm
(max-1) with conventional (non-selective) simulations to evaluate
the effect of overflows. It represents the reference technique where
all the samples are simulated. The third approach, Opt+Csim, com-
bines our IWL optimization algorithm (Section 3) and classical (non-
selective) simulations. For the three approaches, the starting solution
is wIA obtained by interval arithmetic.

Figure 3 shows the evolution of the optimization time of
the three approaches for different SNR per bit with respect to
the BER degradation constraint ∆BERmax. Results show that
Mx1+Csim, the reference approach, is the most time consuming.
Using Opt+Csim reduces the optimization time up to 2.8 times.
However, Opt+Ssim accelerates significantly the optimization time,
where an acceleration factor between 72 and 617 is reported with
respect to Mx1+Csim. Moreover, Opt+Ssim reduces the optimiza-
tion time between 43 and 176 times with respect to Opt+Csim.

Fig. 3. Optimization time evolutions (s) according to the maximum
BER degradation ∆BERmax(%) of the three approaches and for
different SNR

These results emphasize the efficiency of the proposed optimization
approach, and especially when it is combined with selective simu-
lations. For different SNR per bit, the number of iterations in the
optimization algorithms increases when the BER degradation con-
straint is relaxed i.e. high ∆BERmax. This results in an increase
of the optimization times of the three approaches. Moreover, the
increase of ∆BERmax results in higher overflow occurrence. This
increases the number of indices to be simulated (size of Lsim) in the
case of Opt+Ssim and thus increases the simulation time of each iter-
ation, and relatively higher optimization times are observed. For the
different possibilities of SNR per bit and ∆BERmax, our approach
provides a solution leading to the same or a better cost in compari-
son with the reference technique Mx1+Csim while accelerating the
optimization time.

5. CONCLUSION

Automating the fixed point architecture synthesis is essential to re-
duce the time-to-market of hardware design. In this paper, we pro-
pose a new algorithm for IWL optimization that exploits the selec-
tive simulation technique used to evaluate the overflow effects on
application performance. This algorithm does not only reduce the
cost, but also allows overcoming the long execution time of classi-
cal simulation based algorithms. Through experiments applied on
the FFT part of an OFDM chain, the proposed algorithm results in a
significant reduction of cost with acceptable degradation of quality
criteria. At the same time, results show huge enhancement in the
optimization time, where the acceleration factor reaches 617 times
with respect to max-1 bit. This work is a step in accelerating the
design process of fixed-point systems.

6. REFERENCES

[1] Thomas Bollaert, “Catapult synthesis: a practical introduction
to interactive c synthesis,” in High-Level Synthesis, pp. 29–52.
Springer, 2008.

[2] T. Feist, “Vivado Design Suite ,” White papers, Xilinx, june
2012.

[3] C. Shi and R. Brodersen, “An automated floating-point to
fixed-point conversion methodology,” in Proc. IEEE Interna-

8379



tional Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Hong Kong, april 2003, pp. 529–532.

[4] A. Bancu, A Stochastic Approach For The Range Evaluation,
Ph.D. thesis, University of Rennes, Feb. 2012.

[5] R. Kearfott, “Interval Computations: Introduction, Uses, and
Resources,” Euromath Bulletin, vol. 2, no. 1, pp. 95–112, 1996.

[6] L.H. de Figueiredo and J. Stolfi, “Affine arithmetic: Concepts
and applications,” Numerical Algorithms, vol. 37, no. 1, pp.
147–158, 2004.

[7] R. Cmar, L. Rijnders, P. Schaumont, and I. Bolsens, “A
Methodology and Design Environment for DSP ASIC Fixed
Point Refinement,” in Proc. IEEE/ACM conference on Design,
Automation and Test in Europe (DATE), Munich, march 1999,
pp. 271–276.

[8] S. Kim and W. Sung, “Fixed-Point Error Analysis and Word
Length Optimization of 8x8 IDCT Architectures,” IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 8,
no. 8, pp. 935–940, december 1998.
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