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Abstract—Multirate filter banks can be implemented very
efficiently using fast-convolution (FC) processing. The main
advantage of the FC filter banks compared with the conventional
polyphase implementations is their increased flexibility, that
is, the number of channels, their bandwidths, and the center
frequencies can be independently selected. In this paper, an
approach for optimizing the FC filter banks is proposed. First,
a subband representation of the adjustable FC filter banks is
derived. Then, the optimization problems are formulated with
the aid of the subband model. Finally, these problems are conve-
niently solved with the aid of a nonlinear optimization algorithm.
Two examples are included to illustrate the performance of the
proposed overall scheme.

Index Terms—Non-uniform filter banks, fast convolution,
short-time Fourier transform.

I. INTRODUCTION

This paper focuses on a special implementation scheme
for multirate filter banks which is based on fast-convolution
(FC) processing. The basic idea of fast convolution is that a
high-order filter can be implemented effectively through mul-
tiplication in frequency domain, after taking discrete Fourier
transforms (DFT) of the input sequence and the filter impulse
response. Eventually, the time-domain output is obtained by
inverse DFT. Commonly, efficient implementation techniques,
like fast Fourier transform/inverse fast Fourier transform
(FFT/IFFT), are used for the transforms, and overlap-save
processing is adopted for processing long sequences.

The application of FC to multirate filters has be presented
in [1], and FC implementations of channelization filters has
been considered in [2]–[4]. The authors in [5] have introduced
the idea of FC-implementation of nearly perfect-reconstruction
filter bank systems in communication signal processing and
detailed analysis and FC filter bank optimization methods
are developed in [6]. These papers demonstrate the greatly
increased flexibility and efficiency of FC filter bank, in com-
parison with the commonly used polyphase implementation
structure.

This papers describes an optimization method for the FC
filter banks based on the subband representation. The goal
is to optimize the filter bank performance in the minimax
sense for the given specifications. In [6], the focus is on
communication signal processing whereas in this contribution
no specific pulse shaping filtering or waveform processing is
applied. It is shown that in this case, the performance of
these filter banks is determined by the amount of overlap
in overlap-save processing independently of transforms sizes.
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Fig. 1. Block transform representation of the fast-convolution filter bank
with overlap-save processing.

This result considerably simplifies the parameterization of the
optimization problem at hand.

II. FAST-CONVOLUTION SYNTHESIS FILTER BANK

In this section the overlap-save processing of fast-
convolution synthesis filter bank is first described, then the
subband representation of the corresponding filter bank is
derived for analysis and optimization purposes.

A. Overlap-Save Processing

The overlap-save processing of synthesis fast-convolution
filter bank is illustrated in Fig. 1. We consider a case
where K incoming low-rate, narrowband signals xk (n) for
k = 0,1, . . . ,K − 1 with adjustable frequency responses and
with possibly different sampling rates are to be combined into
single wideband signal y(p).

In the block transform signal processing, the incoming
discrete-time input signals xk (n)’s are first transformed to
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frequency domain using discrete short-time Fourier transform
as given by

Xk,b(m) =
Lk−1∑
n=0

xk (n +mLS,k )θk (m)exp(−j2πbn/Lk ) (1)

for b = 0,1, . . . ,Lk−1. Here, Lk is the transform size, b denotes
the frequency bin index, the decimated sample time m denotes
the frame (or block) index, whereas LS,k is the hop size,
i.e., the number of samples between two consecutive frames
as depicted in Fig. 1. The phase shift, θk (m), required to
concatenate the transformed signal back to time domain is
given by (4).

The resulting frequency-domain signals are then shifted in
frequency-domain to their desired positions and weighted such
that their spectra do not undesirably overlap. The weighted
and shifted frequency-domain subband signals are combined in
frequency domain and converted back to the time-domain with
the aid of inverse short-time Fourier transform. The process
of shifting, weighting, and summing the subband signals and
then converting the combined signal back to the time domain
can be expressed as

ym(r ) = 1

N

K−1∑
k=0

Lk−1∑
b=0

Wk (b)Xk,b(m)exp(j2π(b +bk )r /N ) (2)

for r = 0,1, . . . , N − 1. Here, N is the size of the inverse
transform, bk is the index of the first bin of the kth subband
whereas Wk (b) is the frequency-domain weight function deter-
mining the frequency response of the corresponding subband
signal.

The output signal y(p) can be obtained from the output
blocks ym(r )’s either using the overlap-add or overlap-save
processing. The latter can be expressed as

y(p) =∑
m

f (p −mNS)ym(p −mNS), (3a)

where NS is the number of non-overlapping samples in
overlap-save processing (cf. Fig. 1) and

f (n) =
{

1 NL +1 ≤ n ≤ NL +NS

0 otherwise
(3b)

is the function for selecting the samples to be concatenated in
overlap-save processing.

In order to maintain the phase continuity between consec-
utive overlapping processing blocks, an additional phase shift
as given by

θk (m) = exp(j2πmΦk ) with Φk = ck LS,k /Lk (4)

is required in the synthesis processing of (1) [6]. Here, ck is
the center bin of the kth (bandpass) filter.

In the case of block transform processing, the number of
non-overlapping samples is typically determined with the aid
of overlap factor as given by

λ= 1−LS,k /Lk . (5)

In order to process input signal with different sampling rates
and to utilize the overlap-save processing in forming the output

y p( )

wK 1– 0,

wK 1– 1,

wK 1– LK 1– 1–,

θK 1–

m( )

θK 1–

m( )

θK 1–

m( )

w1 0,

w1 1,

w1 L1 1–,

θ1 m( )

θ1 m( )

θ1 m( )

w0 0,

w0 1,

w0 L0 1–,

θ0 m( )

θ0 m( )

θ0 m( )

x2 n( )

x1 n( )

xK n( )

NS

NS

NS

NS

NS

NS

NS

NS

NS

IFFT

FbK 1– LK 1– 1–+ z( )

FbK 1– 1+ z( )

FbK 1–
z( )

Fb1 L1 1–+ z( )

Fb1 1+ z( )

Fb1
z( )

Fb0 L0 1–+ z( )

Fb0 1+ z( )

Fb0
z( )

FFT

G0 L0 1–, z( )

LS,0

LS,0

LS,0

G0 1, z( )

G0 0, z( )

FFT

GK 1– LK 1–, z( )

LS,K–1

LS,K–1

LS,K–1

GK 1– 1, z( )

GK 1– 0, z( )

FFT

G1 L1 1–, z( )

LS,1

LS,1

LS,1

G1 1, z( )

G1 0, z( )

XK 1– LK 1– 1–, m( )

X0 0, m( )

Fig. 2. Subband representation of the FC synthesis filter bank.

signal, the overlap factor has to be equal for all (forward
and inverse) transforms. The number of leading and tailing
overlapping samples for the forward transforms (FFT) are
defined as

LL,k = dλLk /2e and LT,k = bλLk /2c, (6)

respectively, that is, there are LL,k+LT,k = Lk−LS,k overlapping
samples between frames. The corresponding notations for the
inverse transform are depicted in Fig. 1.

In the synthesis filter bank case, it assumed that the inverse
transform size is larger than the forward transform sizes Lk ’s
and, therefore, the above process increses the sampling rate of
the subband signal by factors

Rk = N /Lk . (7)

In other words, the sampling rate conversion factor is deter-
mined by the FFT size, and can be configured for each subband
individually. Naturally, the FFT size determines the maximum
number of frequency bins, i.e., the bandwidth of the subband.

B. Subband Representation

Following the well-known duality between the block trans-
form representation and subband representation [7]–[9], the
fast-convolution synthesis filter bank can be identically mod-
eled as a subband filter bank as depicted in Fig. 2.

The analysis transfer functions Gk,b(z)’s can be derived
straightforwardly from the analysis equation (1) by first assum-
ing that the hop size is LS,k = 1. After substituting s = n +m
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and n̂ = m, (1) can be rewritten as

Xk,b(n̂) =
n̂+Lk−1∑

s=n̂
xk (s)θk (n̂)exp(j2πb(n̂ − s)/Lk )

=
[

n̂+Lk−1∑
s=n̂

xk (s)gk,b(n̂ − s)

]
θk (n̂), (8)

that is, the analysis can be realized by filtering the sequence
xk (n) by analysis filters

gk,b(n) = exp(j2πbn/Lk ) (9)

followed by subsequent modulation by θk (n̂). Correspond-
ingly, the synthesis filters can written as

fb(n) = exp(j2πbn/N ). (10)

Subsampling Xk,b(n̂) by LS,k > 1 results

Xk,b(LS,k n̂) =
Lk−1∑
n=0

xk (n + n̂LS,k )θk (LS,k n̂)exp(−j2πbn/Lk )

= Xk,b(m). (11)

Due to the subsampling, there are LS,k different transfer
functions for the analysis filters depending on the sampling
phase. Consequently, the decimated subband signals can be
written as

Xk,b(z) = 1

Dk

Dk−1∑
q=0

Gk,b(z1/Dk e−j2πq/Dk ,∆)Xk (z1/Dk e−j2πq/Dk ),

(12)

where Gk,b(z,∆)’s are the transfer functions of the analysis
filters for the sampling shift ∆= 0,1, . . . ,LS,k −1 and Dk = LS,k

is the decimation factor. The resulting output signal can then
be expressed as

Y (z) =
Lk−1∑
k=0

Lk−1∑
b=0

Wk (b)Xk,b(z Ik e−j2πΦk )Fb+b0,k
(z), (13)

where Fb(z)’s are the transfer functions of the synthesis filters,
Ik = NS is the interpolation factor, and Φk is given by (4).

After some manipulations, the frequency response from the
kth input with sampling shift ∆ to the filter bank output is
expressible as

Hk (ejω,∆) = 1

N Dk

Lk−1∑
b=0

Wk (b)Gk,b(ejω,∆)Fb+b0,k
(ejω), (14a)

where

Gk,b(ejω,∆) =
Dk−1∑
q=0

Lk−1∑
`=0

exp(j2π`(b +dLk /2e)]/Lk )

×exp(`+∆+LL,k )j2π(q+λk0)/Dk

×exp(−jI /Dk [`+∆+LL,k ]ω) (14b)

for k = 1,2, . . . ,L and

Fb(e jω) =
NS−1∑
`=0

exp(j2πb[NL +`]/N )exp(−jω`) (14c)

are the frequency responses of the analysis and synthesis
filters, respectively.

III. PROTOTYPE FILTER OPTIMIZATION

The goal is to optimize the frequency-domain weights in
such a manner that both the passband and stopband ripples of
the resulting subchannels are minimized. This can be achieved
by minimizing for all the lowpass prototype filters (i.e., filters
with different Lk ’s) independently the following maximum of
the normalized error function:

ε= max
ω∈[0,ωp ]∪ω∈[ωs ,π]

0≤∆≤LL,k−1

|G(ω)[|Hk (ejω,∆)|−D(ω)]|, (15a)

where

D(ω) =
{

1, ω ∈ [0,ωp,k ]

0, ω ∈ [ωs,k ,π],
(15b)

G(ω) =
{
δs /δp , ω ∈ [0,ωp,k ]

1, ω ∈ [ωs,k ,π],
(15c)

and Hk (ejω,∆) is given by (14). Here, δp and δs are the desired
passband and stopband ripples, respectively, whereas ωp,k and
ωs,k are the passband and stopband edge frequencies of kth
lowpass prototype filter as given by

ωp,k = (1−ρk )π

2Rk
and ωs,k = π

2Rk
, (16)

respectively.
The resulting optimization problems are the following:

Given Rk , δp , δs , ωp,k , and ωs,k find N , Lk , and λ to
minimize the normalized error function as given by (15).
These problems can be conveniently solved with the aid of
any efficient nonlinear optimization algorithm, e.g., fminimax
from the optimization toolbox provided by MathWorks, Inc
[10].

IV. IMPLEMENTATION COMPLEXITY

The number of real multiplications per output sample re-
quired for the overall filter bank can be expressed as follows:

CM = 1

N (1−λ)

(
CIFFT +

K−1∑
k=0

[
CFFT,k +2LT,k +2LS,k

])
. (17)

Here, CFFT,k and CIFFT are the number of real multiplications
required to implement the forward and inverse transforms,
respectively, whereas 2LT,k real multiplications are needed
for weighting the complex frequency domain samples by
real weight values (cf. Fig. 1) and 2LS,k multiplications are
required for multiplying the real overlapped input signal blocks
by complex phase rotations.1 In general LT,k = Lk , however,
the number of multiplications can be reduced by constraining
some of the weights to be equal to one as will be described
in Section V.

V. NUMERICAL EXAMPLES

This section illustrates the overall design scheme and the
complexity of the optimized filter bank in terms of two
examples.

1It should be noted that, in the case of conventional single-band interpo-
lators, the frequency shift is typically equal to zero [Θk = ck = 0 in (4)] and
the rightmost-hand term can be excluded from (17).

8374



1 3 5 7 9 11 13 15
−100

−90

−80

−70

−60

−50

−40

Overlap in samples

N
o

rm
a

liz
e

d
 e

rr
o

r 
in

 d
B

(a)

 

 

M = 8

M = 12

M = 16

1 3 5 7 9 11 13 15
0

5

10

15

20

25

30

35

40
(b)

Overlap in samples

R
e

a
l 
m

u
lt
ip

lic
a

ti
o

n
s 

p
e

r 
o

u
tp

u
t 

sa
m

p
le

 

Fig. 3. (a) Normalized error function as a function of overlap in Example 1.
(b) The corresponding implementation complexity.

A. Example 1

It is desired to design a single channel (K = 1) filter
bank, i.e., an interpolator with the sampling rate conversion
factor of 28/3. The desired passband and stopband ripples are
δs = 100δp = 0.001 (60-dB stopband attenuation). The roll-
off factor is ρ1 = 0.1, i.e., the passband edge frequency is
ωp = 0.0856π. The lengths of the forward and inverse trans-
forms can be chosen as L0 = 3M and N = 28M , respectively,
where M is an integer. For a given M , the overlap factor can
be selected from λ= 1/M ,2/M , . . . , (M −1)/M .

Figure 3(a) shows the normalized error, as given by (15),
as a function of overlap for the optimized filters for M =
{8,12,16}. As can be seen from this figure, the given spec-
ification can be met for M = 8 with λ = 7/8, for M = 12
with λ = 7/12, and for M = 16 with λ = 7/16, that is, the
frequency-domain performance for the given specifications
is characterized by the overlap in samples independently of
transforms sizes. However, the number of real multiplications
per output sample, as depicted in Fig. 3(b), clearly reduces as
the transforms sizes increase and, consequently, the overlap
factor decreases. It has been also observed that some of the
passband weights can be constrained to be equal to one, that
is, only the transition band weights has to be implemented.
This further reduces the implementation cost.

For M = 16 case, the number of real multiplications required
to implement FFT and IFFT are CFFT = 96 and CFFT = 1320,
respectively [11]. Using (17), the number or real multiplica-
tions per output sample is 5.98 with LT,k = Lk = 48 and 5.75
with LT,k = 18. The corresponding value for the polyphase
realization meeting the same specifications is 9.46, that is, the
reduction in computational complexity is at least 36 percent.2

B. Example 2

It is desired to design a four channel non-uniform filter bank
with δp = δs = 0.001, Rk = 16/{7,3,5,1}, and ρk = 0.2/(Rk /16)

2It should be pointed out that, if it is desired to simultaneously shift the
resulting interpolated signal in frequency domain, then the complexity of
the polyphase implementation doubles due to the required complex filtering
whereas for the fast-convolution based filtering the increase in complexity is
from 5.98 to 6.36.
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Fig. 4. (a) Magnitude responses of the optimized FC filter bank in Example
2. (b) One of the many other alternative configurations.

for k = 0,1,2,3 [12]. The specification are met by overlap of
18 samples, that is, the shortest FFT satisfying the specifica-
tions is 19. However, in order to reduce the implementation
complexity, the FFT length is chosen to be multiple of 32. In
this case, the FFT lengths become Lk = {224,96,160,32} for
k = 0,1,2,3 and IFFT length is 512.

Figure 4(a) shows the magnitude responses for the op-
timized filter bank. The number of real multiplications per
output sample for the proposed design is 25.09 with LT,k = 14
for k = 0,1,2,3. For the filter bank in [12], roughly 35 real mul-
tiplications are needed per output sample. For comprehension,
Fig. 4(b) shows one of the many alternative configurations
being realizable with the same optimized prototype filters.
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